Suppr超能文献

一种从苏木精-伊红染色的全切片图像中检测正常和结核感染肺部的计算框架。

A Computational Framework to Detect Normal and Tuberculosis Infected Lung from H&E-stained Whole Slide Images.

作者信息

Niazi M Khalid Khan, Beamer Gillian, Gurcan Metin N

机构信息

Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio, USA.

Department of Infectious Disease and Global Health, Tufts University, Grafton, Massachusetts, USA.

出版信息

Proc SPIE Int Soc Opt Eng. 2017 Feb;10140. doi: 10.1117/12.2255627. Epub 2017 Mar 1.

Abstract

Accurate detection and quantification of normal lung tissue in the context of infection is of interest from a biological perspective. The automatic detection and quantification of normal lung will allow the biologists to focus more intensely on regions of interest within normal and infected tissues. We present a computational framework to extract individual tissue sections from whole slide images having multiple tissue sections. It automatically detects the background, red blood cells and handwritten digits to bring efficiency as well as accuracy in quantification of tissue sections. For efficiency, we model our framework with logical and morphological operations as they can be performed in linear time. We further divide these individual tissue sections into normal and infected areas using deep neural network. The computational framework was trained on 60 whole slide images. The proposed computational framework resulted in an overall accuracy of 99.2% when extracting individual tissue sections from 120 whole slide images in the test dataset. The framework resulted in a relatively higher accuracy (99.7%) while classifying individual lung sections into normal and infected areas. Our preliminary findings suggest that the proposed framework has good agreement with biologists on how define normal and infected lung areas.

摘要

从生物学角度来看,在感染背景下准确检测和定量正常肺组织具有重要意义。正常肺组织的自动检测和定量将使生物学家能够更专注于正常组织和感染组织中的感兴趣区域。我们提出了一个计算框架,用于从具有多个组织切片的全切片图像中提取单个组织切片。它能自动检测背景、红细胞和手写数字,从而在组织切片定量方面提高效率和准确性。为了提高效率,我们用逻辑和形态学操作对框架进行建模,因为这些操作可以在线性时间内执行。我们进一步使用深度神经网络将这些单个组织切片划分为正常区域和感染区域。该计算框架在60张全切片图像上进行了训练。当从测试数据集中的120张全切片图像中提取单个组织切片时,所提出的计算框架总体准确率达到了99.2%。在将单个肺切片分类为正常区域和感染区域时,该框架的准确率相对较高(99.7%)。我们的初步研究结果表明,所提出的框架在如何定义正常和感染肺区域方面与生物学家的观点具有良好的一致性。

相似文献

1
A Computational Framework to Detect Normal and Tuberculosis Infected Lung from H&E-stained Whole Slide Images.
Proc SPIE Int Soc Opt Eng. 2017 Feb;10140. doi: 10.1117/12.2255627. Epub 2017 Mar 1.
6
Attention2majority: Weak multiple instance learning for regenerative kidney grading on whole slide images.
Med Image Anal. 2022 Jul;79:102462. doi: 10.1016/j.media.2022.102462. Epub 2022 Apr 17.
7
A CNN-based active learning framework to identify mycobacteria in digitized Ziehl-Neelsen stained human tissues.
Comput Med Imaging Graph. 2020 Sep;84:101752. doi: 10.1016/j.compmedimag.2020.101752. Epub 2020 Jul 25.
9
Recognizing basal cell carcinoma on smartphone-captured digital histopathology images with a deep neural network.
Br J Dermatol. 2020 Mar;182(3):754-762. doi: 10.1111/bjd.18026. Epub 2019 Aug 22.

引用本文的文献

2
Systems genetics uncover new loci containing functional gene candidates in Mycobacterium tuberculosis-infected Diversity Outbred mice.
PLoS Pathog. 2024 Jun 11;20(6):e1011915. doi: 10.1371/journal.ppat.1011915. eCollection 2024 Jun.
3
7
Automatic Detection of Granuloma Necrosis in Pulmonary Tuberculosis Using a Two-Phase Algorithm: 2D-TB.
Microorganisms. 2019 Dec 7;7(12):661. doi: 10.3390/microorganisms7120661.
8
DeepFocus: Detection of out-of-focus regions in whole slide digital images using deep learning.
PLoS One. 2018 Oct 25;13(10):e0205387. doi: 10.1371/journal.pone.0205387. eCollection 2018.
9
Identifying tumor in pancreatic neuroendocrine neoplasms from Ki67 images using transfer learning.
PLoS One. 2018 Apr 12;13(4):e0195621. doi: 10.1371/journal.pone.0195621. eCollection 2018.

本文引用的文献

2
Genetically diverse mice are novel and valuable models of age-associated susceptibility to Mycobacterium tuberculosis.
Immun Ageing. 2014 Dec 16;11(1):24. doi: 10.1186/s12979-014-0024-6. eCollection 2014.
3
Deep learning in neural networks: an overview.
Neural Netw. 2015 Jan;61:85-117. doi: 10.1016/j.neunet.2014.09.003. Epub 2014 Oct 13.
4
Perceptual clustering for automatic hotspot detection from Ki-67-stained neuroendocrine tumour images.
J Microsc. 2014 Dec;256(3):213-25. doi: 10.1111/jmi.12176. Epub 2014 Sep 16.
5
Detecting and characterizing cellular responses to Mycobacterium tuberculosis from histology slides.
Cytometry A. 2014 Feb;85(2):151-61. doi: 10.1002/cyto.a.22424. Epub 2013 Dec 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验