Suppr超能文献

深焦:使用深度学习检测全幻灯片数字图像中的离焦区域。

DeepFocus: Detection of out-of-focus regions in whole slide digital images using deep learning.

机构信息

Center for Biomedical Informatics, Wake Forest School of Medicine, Winston-Salem, NC, United States of America.

Department of Pathology, The Ohio State University Wexner Medical, Columbus, OH, United States of America.

出版信息

PLoS One. 2018 Oct 25;13(10):e0205387. doi: 10.1371/journal.pone.0205387. eCollection 2018.

Abstract

The development of whole slide scanners has revolutionized the field of digital pathology. Unfortunately, whole slide scanners often produce images with out-of-focus/blurry areas that limit the amount of tissue available for a pathologist to make accurate diagnosis/prognosis. Moreover, these artifacts hamper the performance of computerized image analysis systems. These areas are typically identified by visual inspection, which leads to a subjective evaluation causing high intra- and inter-observer variability. Moreover, this process is both tedious, and time-consuming. The aim of this study is to develop a deep learning based software called, DeepFocus, which can automatically detect and segment blurry areas in digital whole slide images to address these problems. DeepFocus is built on TensorFlow, an open source library that exploits data flow graphs for efficient numerical computation. DeepFocus was trained by using 16 different H&E and IHC-stained slides that were systematically scanned on nine different focal planes, generating 216,000 samples with varying amounts of blurriness. When trained and tested on two independent datasets, DeepFocus resulted in an average accuracy of 93.2% (± 9.6%), which is a 23.8% improvement over an existing method. DeepFocus has the potential to be integrated with whole slide scanners to automatically re-scan problematic areas, hence improving the overall image quality for pathologists and image analysis algorithms.

摘要

全玻片扫描仪的发展彻底改变了数字病理学领域。不幸的是,全玻片扫描仪经常生成焦点不清晰/模糊的图像,这限制了病理学家进行准确诊断/预后的组织量。此外,这些伪影会影响计算机图像分析系统的性能。这些区域通常通过视觉检查来识别,这会导致主观评估,从而导致观察者内和观察者间的高度变异性。此外,这个过程既繁琐又耗时。本研究的目的是开发一种基于深度学习的软件,称为 DeepFocus,它可以自动检测和分割数字全玻片图像中的模糊区域,以解决这些问题。DeepFocus 是基于 TensorFlow 构建的,TensorFlow 是一个开源库,它利用数据流图进行高效的数值计算。DeepFocus 通过使用 16 张不同的 H&E 和 IHC 染色载玻片进行训练,这些载玻片在九个不同的焦点平面上系统地扫描,生成了 216,000 个具有不同模糊程度的样本。在两个独立的数据集上进行训练和测试时,DeepFocus 的平均准确率为 93.2%(±9.6%),比现有方法提高了 23.8%。DeepFocus 有可能与全玻片扫描仪集成,以自动重新扫描有问题的区域,从而提高病理学家和图像分析算法的整体图像质量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c1cc/6201886/9f7af0095347/pone.0205387.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验