Mikhaylets Ekaterina, Razorenova Alexandra M, Chernyshev Vsevolod, Syrov Nikolay, Yakovlev Lev, Boytsova Julia, Kokurina Elena, Zhironkina Yulia, Medvedev Svyatoslav, Kaplan Alexander
Faculty of Computer Science, Faculty of Economic Sciences, HSE University, Moscow, Russia.
Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russia.
Front Neuroinform. 2024 Jan 29;17:1301718. doi: 10.3389/fninf.2023.1301718. eCollection 2023.
The study presents a novel approach designed to detect time-continuous states in time-series data, called the State-Detecting Algorithm (SDA). The SDA operates on unlabeled data and detects optimal change-points among intrinsic functional states in time-series data based on an ensemble of Ward's hierarchical clustering with time-connectivity constraint. The algorithm chooses the best number of states and optimal state boundaries, maximizing clustering quality metrics. We also introduce a series of methods to estimate the performance and confidence of the SDA when the ground truth annotation is unavailable. These include information value analysis, paired statistical tests, and predictive modeling analysis. The SDA was validated on EEG recordings of Guhyasamaja meditation practice with a strict staged protocol performed by three experienced Buddhist practitioners in an ecological setup. The SDA used neurophysiological descriptors as inputs, including PSD, power indices, coherence, and PLV. analysis of the obtained EEG states revealed significant differences compared to the baseline and neighboring states. The SDA was found to be stable with respect to state order organization and showed poor clustering quality metrics and no statistical significance between states when applied to randomly shuffled epochs (i.e., surrogate subject data used as controls). The SDA can be considered a general data-driven approach that detects hidden functional states associated with the mental processes evolving during meditation or other ongoing mental and cognitive processes.
这项研究提出了一种旨在检测时间序列数据中时间连续状态的新方法,称为状态检测算法(SDA)。SDA对未标记数据进行操作,并基于具有时间连通性约束的Ward层次聚类集成,在时间序列数据的内在功能状态中检测最优变化点。该算法选择最佳的状态数量和最优的状态边界,以最大化聚类质量指标。当没有地面真值注释时,我们还引入了一系列方法来估计SDA的性能和置信度。这些方法包括信息值分析、配对统计检验和预测建模分析。SDA在三位经验丰富的佛教修行者在生态环境中按照严格的阶段协议进行的密集金刚禅修练习的脑电图记录上得到了验证。SDA使用神经生理描述符作为输入,包括功率谱密度(PSD)、功率指数、相干性和相位锁定值(PLV)。对获得的脑电图状态的分析显示,与基线和相邻状态相比存在显著差异。当应用于随机打乱的时段(即用作对照的替代受试者数据)时,发现SDA在状态顺序组织方面是稳定的,但聚类质量指标较差,且状态之间没有统计学意义。SDA可以被认为是一种通用的数据驱动方法,用于检测与冥想或其他正在进行的心理和认知过程中演变的心理过程相关的隐藏功能状态。