Suppr超能文献

基于最大权团的脑电时间序列聚类

Brain EEG Time-Series Clustering Using Maximum-Weight Clique.

作者信息

Dai Chenglong, Wu Jia, Pi Dechang, Becker Stefanie I, Cui Lin, Zhang Qin, Johnson Blake

出版信息

IEEE Trans Cybern. 2022 Jan;52(1):357-371. doi: 10.1109/TCYB.2020.2974776. Epub 2022 Jan 11.

Abstract

Brain electroencephalography (EEG), the complex, weak, multivariate, nonlinear, and nonstationary time series, has been recently widely applied in neurocognitive disorder diagnoses and brain-machine interface developments. With its specific features, unlabeled EEG is not well addressed by conventional unsupervised time-series learning methods. In this article, we handle the problem of unlabeled EEG time-series clustering and propose a novel EEG clustering algorithm, that we call mwcEEGc. The idea is to map the EEG clustering to the maximum-weight clique (MWC) searching in an improved Fréchet similarity-weighted EEG graph. The mwcEEGc considers the weights of both vertices and edges in the constructed EEG graph and clusters EEG based on their similarity weights instead of calculating the cluster centroids. To the best of our knowledge, it is the first attempt to cluster unlabeled EEG trials using MWC searching. The mwcEEGc achieves high-quality clusters with respect to intracluster compactness as well as intercluster scatter. We demonstrate the superiority of mwcEEGc over ten state-of-the-art unsupervised learning/clustering approaches by conducting detailed experimentations with the standard clustering validity criteria on 14 real-world brain EEG datasets. We also present that mwcEEGc satisfies the theoretical properties of clustering, such as richness, consistency, and order independence.

摘要

脑脑电图(EEG)是一种复杂、微弱、多变量、非线性且非平稳的时间序列,近年来在神经认知障碍诊断和脑机接口开发中得到了广泛应用。由于其特定的特征,传统的无监督时间序列学习方法无法很好地处理未标记的EEG。在本文中,我们处理未标记EEG时间序列聚类的问题,并提出了一种新颖的EEG聚类算法,我们称之为mwcEEGc。其思路是将EEG聚类映射到在改进的弗雷歇相似性加权EEG图中搜索最大权团(MWC)。mwcEEGc考虑了所构建的EEG图中顶点和边的权重,并基于它们的相似性权重对EEG进行聚类,而不是计算聚类质心。据我们所知,这是首次尝试使用MWC搜索对未标记的EEG试验进行聚类。mwcEEGc在簇内紧凑性和簇间离散度方面实现了高质量的聚类。我们通过在14个真实世界的脑EEG数据集上使用标准聚类有效性标准进行详细实验,证明了mwcEEGc优于十种先进的无监督学习/聚类方法。我们还表明,mwcEEGc满足聚类的理论属性,如丰富性、一致性和顺序独立性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验