Li Xinyuan, Cai Congcong, Hu Ping, Zhang Bao, Wu Peijie, Fan Hao, Chen Zhuo, Zhou Liang, Mai Liqiang, Fan Hong Jin
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China.
School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore.
Adv Mater. 2024 Jun;36(23):e2400184. doi: 10.1002/adma.202400184. Epub 2024 Feb 19.
Engineering carbonaceous cathode materials with adequately accessible active sites is crucial for unleashing their charge storage potential. Herein, activated meso-microporous shell carbon (MMSC-A) nanofibers are constructed to enhance the zinc ion storage density by forming a gradient-pore structure. A dominating pore size of 0.86 nm is tailored to cater for the solvated [Zn(HO)]. Moreover, these gradient porous nanofibers feature rapid ion/electron dual conduction pathways and offer abundant active surfaces with high affinity to electrolyte. When employed in Zn-ion capacitors (ZICs), the electrode delivers significantly enhanced capacity (257 mAh g), energy density (200 Wh kg at 78 W kg), and cyclic stability (95% retention after 10 000 cycles) compared to nonactivated carbon nanofibers electrode. A series of in situ characterization techniques unveil that the improved Zn storage capability stems from size compatibility between the pores and [Zn(HO)], the co-adsorption of Zn, H, and SO , as well as reversible surface chemical interaction. This work presents an effective method to engineering meso-microporous carbon materials toward high energy-density storage, and also offers insights into the Zn storage mechanism in such gradient-pore structures.
设计具有充分可及活性位点的碳质阴极材料对于释放其电荷存储潜力至关重要。在此,通过形成梯度孔结构构建了活性介观-微孔壳碳(MMSC-A)纳米纤维,以提高锌离子存储密度。定制了0.86纳米的主导孔径以适应溶剂化的[Zn(HO)]。此外,这些梯度多孔纳米纤维具有快速的离子/电子双传导途径,并提供对电解质具有高亲和力的丰富活性表面。当用于锌离子电容器(ZIC)时,与未活化的碳纳米纤维电极相比,该电极的容量(257 mAh g)、能量密度(在78 W kg时为200 Wh kg)和循环稳定性(10000次循环后保留95%)显著提高。一系列原位表征技术揭示,锌存储能力的提高源于孔与[Zn(HO)]之间的尺寸兼容性、锌、氢和硫酸根的共吸附以及可逆的表面化学相互作用。这项工作提出了一种有效的方法来设计介观-微孔碳材料以实现高能量密度存储,同时也为这种梯度孔结构中的锌存储机制提供了见解。