Fang Cuiqin, Han Jing, Yang Qingjun, Gao Zhenguo, Tan Di, Chen Tiandi, Xu Bingang
Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong, 999077, China.
Adv Sci (Weinh). 2024 Oct;11(40):e2408549. doi: 10.1002/advs.202408549. Epub 2024 Aug 29.
MXene-based Zn-ion capacitors (ZICs) with adsorption-type and battery-type electrodes demonstrate high energy storage and anti-self-discharge capabilities, potentially being paired with triboelectric nanogenerators (TENGs) to construct self-powered systems. Nevertheless, inadequate interlayer spacing, deficient active sites, and compact self-restacking of MXene flakes pose hurdles for MXene-based ZICs, limiting their applications. Herein, black phosphorus (BP)-Zn-MXene hybrid is formulated for MXene-based ZIC via a two-step molecular engineering strategy of Zn-ion pre-intercalation and BP nanosheet assembly. Zn ions as intercalators induce cross-linking of MXene flakes with expandable interlayer spacing to serve as scaffolds for BP nanosheets, thereby providing sufficient accessible active sites and efficient migration routes for enhanced Zn-ion storage. The density functional theory calculations affirm that zinc adsorption and diffusion kinetics are significantly improved in the hybrid. A wearable ZIC with the hybrid delivers a competitive areal energy of 426.3 µWh cm and ultra-low self-discharge rate of 7.0 mV h, achieving remarkable electrochemical matching with TENGs in terms of low energy loss, matched capacity, and fast Zn-ion storage. The resultant self-powered system efficiently collects and stores energy from human motion to power microelectronics. This work advances the Zn-ion storage of MXene-based ZICs and their synergy with TENG in self-powered systems.
具有吸附型和电池型电极的基于MXene的锌离子电容器(ZIC)展现出高能量存储和抗自放电能力,有望与摩擦纳米发电机(TENG)配对以构建自供电系统。然而,MXene片层的层间距不足、活性位点缺乏以及紧密的自堆叠给基于MXene的ZIC带来了障碍,限制了它们的应用。在此,通过锌离子预嵌入和黑磷(BP)纳米片组装的两步分子工程策略,为基于MXene的ZIC制备了BP-Zn-MXene杂化物。作为嵌入剂的锌离子诱导MXene片层交联,使其层间距可扩展,作为BP纳米片的支架,从而为增强锌离子存储提供足够的可及活性位点和高效迁移路径。密度泛函理论计算证实,杂化物中的锌吸附和扩散动力学显著改善。具有该杂化物的可穿戴ZIC具有426.3 μWh cm的竞争面能量和7.0 mV h的超低自放电率,在低能量损耗、匹配容量和快速锌离子存储方面与TENG实现了显著的电化学匹配。所得的自供电系统有效地收集和存储来自人体运动的能量以为微电子设备供电。这项工作推动了基于MXene的ZIC的锌离子存储及其在自供电系统中与TENG的协同作用。