三维生物反应器系统中人骨髓间充质干细胞的动态培养及其细胞外囊泡的生产。
Dynamic cultivation of human mesenchymal stem/stromal cells for the production of extracellular vesicles in a 3D bioreactor system.
机构信息
Institute of Cell and Tissue Culture Technology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria.
Center for Biomedical Technology, Department for Biomedical Research, University for Continuing Education Krems, Krems, Austria.
出版信息
Biotechnol Lett. 2024 Apr;46(2):279-293. doi: 10.1007/s10529-024-03465-4. Epub 2024 Feb 13.
PURPOSE
3D cell culture and hypoxia have been demonstrated to increase the therapeutic effects of mesenchymal stem/stromal cells (MSCs)-derived extracellular vesicles (EVs). In this study, a process for the production of MSC-EVs in a novel 3D bioreactor system under normoxic and hypoxic conditions was established and the resulting EVs were characterized.
METHODS
Human adipose-derived MSCs were seeded and cultured on a 3D membrane in the VITVO® bioreactor system for 7 days. Afterwards, MSC-EVs were isolated and characterized via fluorescence nanoparticle tracking analysis, flow cytometry with staining against annexin V (Anx5) as a marker for EVs exposing phosphatidylserine, as well as CD73 and CD90 as MSC surface markers.
RESULTS
Cultivation of MSC in the VITVO® bioreactor system demonstrated a higher concentration of MSC-EVs from the 3D bioreactor (9.1 × 10 ± 1.5 × 10 and 9.7 × 10 ± 3.1 × 10 particles/mL) compared to static 2D culture (4.2 × 10 ± 7.5 × 10 and 3.9 × 10 ± 3.0 × 10 particles/mL) under normoxic and hypoxic conditions, respectively. Also, the particle-to-protein ratio as a measure for the purity of EVs increased from 3.3 × 10 ± 1.1 × 10 particles/µg protein in 2D to 1.6 × 10 ± 8.3 × 10 particles/µg protein in 3D. Total MSC-EVs as well as CD73CD90 MSC-EVs were elevated in 2D normoxic conditions. The EV concentration and size did not differ significantly between normoxic and hypoxic conditions.
CONCLUSION
The production of MSC-EVs in a 3D bioreactor system under hypoxic conditions resulted in increased EV concentration and purity. This system could be especially useful in screening culture conditions for the production of 3D-derived MSC-EVs.
目的
已有研究表明,三维细胞培养和低氧环境可提高间充质干细胞(MSC)衍生细胞外囊泡(EVs)的治疗效果。本研究建立了一种在新型三维生物反应器系统中于常氧和低氧条件下生产 MSC-EVs 的方法,并对所得 EVs 进行了表征。
方法
将人脂肪来源的 MSC 接种并在 VITVO®生物反应器系统中的 3D 膜上培养 7 天。之后,通过荧光纳米颗粒跟踪分析、流式细胞术(用作为 EVs 暴露的磷脂酰丝氨酸标志物的 Annexin V(Anx5)染色以及 MSC 表面标志物 CD73 和 CD90)分离和表征 MSC-EVs。
结果
与静态 2D 培养相比,在常氧和低氧条件下,VITVO®生物反应器系统中 MSC 的培养可产生更高浓度的 3D 生物反应器来源的 MSC-EVs(分别为 9.1×10±1.5×10和 9.7×10±3.1×10 颗粒/mL)和 2D 培养(分别为 4.2×10±7.5×10和 3.9×10±3.0×10 颗粒/mL)。此外,作为 EVs 纯度测量指标的颗粒与蛋白的比值从 2D 中的 3.3×10±1.1×10 颗粒/μg 蛋白增加到 3D 中的 1.6×10±8.3×10 颗粒/μg 蛋白。2D 常氧条件下总 MSC-EVs 和 CD73CD90 MSC-EVs 升高。常氧和低氧条件下,EV 浓度和大小无显著差异。
结论
在低氧条件下的 3D 生物反应器系统中生产 MSC-EVs 可提高 EV 浓度和纯度。该系统在筛选用于生产 3D 衍生 MSC-EVs 的培养条件方面可能特别有用。