文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

缺氧预处理嗅黏膜间充质干细胞来源的细胞外囊泡通过 miR-612 促进血管生成。

Extracellular vesicles derived from hypoxia-preconditioned olfactory mucosa mesenchymal stem cells enhance angiogenesis via miR-612.

机构信息

Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China.

The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China.

出版信息

J Nanobiotechnology. 2021 Nov 21;19(1):380. doi: 10.1186/s12951-021-01126-6.


DOI:10.1186/s12951-021-01126-6
PMID:34802444
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8607643/
Abstract

Mesenchymal stem cells (MSCs) play important roles in tissue repair and regeneration, such as the induction of angiogenesis, particularly under hypoxic conditions. However, the molecular mechanisms underlying hypoxic MSC activation remain largely unknown. MSC-derived extracellular vesicles (EVs) are vital mediators of cell-to-cell communication and can be directly utilized as therapeutic agents for tissue repair and regeneration. Here, we explored the effects of EVs from human hypoxic olfactory mucosa MSCs (OM-MSCs) on angiogenesis and its underlying mechanism. EVs were isolated from normoxic (N) OM-MSCs (N-EVs) and hypoxic (H) OM-MSCs (H-EVs) using differential centrifugation and identified by transmission electron microscopy and flow cytometry. In vitro and in vivo, both types of OM-MSC-EVs promoted the proliferation, migration, and angiogenic activities of human brain microvascular endothelial cells (HBMECs). In addition, angiogenesis-stimulatory activity in the H-EV group was significantly enhanced compared to the N-EV group. MicroRNA profiling revealed a higher abundance of miR-612 in H-EVs than in N-EVs, while miR-612 inactivation abolished the N-EV treatment benefit. To explore the roles of miR-612, overexpression and knock-down experiments were performed using a mimic and inhibitor or agomir and antagomir of miR-612. The miR-612 target genes were confirmed using the luciferase reporter assay. Gain- and loss-of-function studies allowed the validation of miR-612 (enriched in hypoxic OM-MSC-EVs) as a functional messenger that stimulates angiogenesis and represses the expression of TP53 by targeting its 3'-untranslated region. Further functional assays showed that hypoxic OM-MSC-EVs promote paracrine Hypoxia-inducible factor 1-alpha (HIF-1α)-Vascular endothelial growth factor (VEGF) signaling in HBMECs via the exosomal miR-612-TP53-HIF-1α-VEGF axis. These findings suggest that hypoxic OM-MSC-EVs may represent a promising strategy for ischemic disease by promoting angiogenesis via miR-612 transfer.

摘要

间充质干细胞 (MSCs) 在组织修复和再生中发挥重要作用,例如诱导血管生成,特别是在缺氧条件下。然而,缺氧 MSC 激活的分子机制在很大程度上尚不清楚。MSC 衍生的细胞外囊泡 (EVs) 是细胞间通讯的重要介质,可直接用作组织修复和再生的治疗剂。在这里,我们探讨了缺氧嗅黏膜 MSC(OM-MSCs)衍生的 EVs 对血管生成及其潜在机制的影响。EVs 通过差速离心从常氧(N)OM-MSCs(N-EVs)和缺氧(H)OM-MSCs(H-EVs)中分离出来,并通过透射电子显微镜和流式细胞术进行鉴定。在体外和体内,两种类型的 OM-MSC-EVs 均促进人脑微血管内皮细胞(HBMECs)的增殖、迁移和血管生成活性。此外,与 N-EV 组相比,H-EV 组的血管生成刺激活性显著增强。miRNA 谱分析显示 H-EVs 中 miR-612 的丰度明显高于 N-EVs,而 miR-612 失活消除了 N-EV 处理的益处。为了探讨 miR-612 的作用,使用 miR-612 的模拟物和抑制剂或激动剂和拮抗剂进行了过表达和敲低实验。通过荧光素酶报告基因测定证实了 miR-612 的靶基因。通过增益和失能研究验证了 miR-612(富含缺氧 OM-MSC-EVs)作为一种功能性信使,通过靶向其 3'非翻译区来刺激血管生成并抑制 TP53 的表达。进一步的功能测定表明,缺氧 OM-MSC-EVs 通过外泌体 miR-612-TP53-HIF-1α-VEGF 轴促进 HBMECs 中的 HIF-1α-VEGF 信号传导。这些发现表明,缺氧 OM-MSC-EVs 可能通过转移 miR-612 来促进血管生成,从而成为缺血性疾病的一种很有前途的策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6993/8607643/1325661942a3/12951_2021_1126_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6993/8607643/4c268d76b57f/12951_2021_1126_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6993/8607643/c51dfea3c467/12951_2021_1126_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6993/8607643/c0cdc01399fe/12951_2021_1126_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6993/8607643/c66a01f1e7f4/12951_2021_1126_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6993/8607643/a12e1e3b2366/12951_2021_1126_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6993/8607643/9d09e7b5440e/12951_2021_1126_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6993/8607643/066a6259c6ed/12951_2021_1126_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6993/8607643/d8112dd84c27/12951_2021_1126_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6993/8607643/1325661942a3/12951_2021_1126_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6993/8607643/4c268d76b57f/12951_2021_1126_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6993/8607643/c51dfea3c467/12951_2021_1126_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6993/8607643/c0cdc01399fe/12951_2021_1126_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6993/8607643/c66a01f1e7f4/12951_2021_1126_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6993/8607643/a12e1e3b2366/12951_2021_1126_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6993/8607643/9d09e7b5440e/12951_2021_1126_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6993/8607643/066a6259c6ed/12951_2021_1126_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6993/8607643/d8112dd84c27/12951_2021_1126_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6993/8607643/1325661942a3/12951_2021_1126_Fig9_HTML.jpg

相似文献

[1]
Extracellular vesicles derived from hypoxia-preconditioned olfactory mucosa mesenchymal stem cells enhance angiogenesis via miR-612.

J Nanobiotechnology. 2021-11-21

[2]
MicroRNA-100 shuttled by mesenchymal stem cell-derived exosomes suppresses in vitro angiogenesis through modulating the mTOR/HIF-1α/VEGF signaling axis in breast cancer cells.

Cell Oncol (Dordr). 2017-7-24

[3]
Hypoxic mesenchymal stem cell-derived exosomes promote bone fracture healing by the transfer of miR-126.

Acta Biomater. 2020-2

[4]
Hypoxic bone marrow mesenchymal cell-extracellular vesicles containing miR-328-3p promote lung cancer progression via the NF2-mediated Hippo axis.

J Cell Mol Med. 2021-1

[5]
Mesenchymal stem cells-derived extracellular vesicles, via miR-210, improve infarcted cardiac function by promotion of angiogenesis.

Biochim Biophys Acta Mol Basis Dis. 2017-2-27

[6]
Small extracellular vesicles derived from hypoxic mesenchymal stem cells promote vascularized bone regeneration through the miR-210-3p/EFNA3/PI3K pathway.

Acta Biomater. 2022-9-15

[7]
Hypoxic conditioned promotes the proliferation of human olfactory mucosa mesenchymal stem cells and relevant lncRNA and mRNA analysis.

Life Sci. 2021-1-15

[8]
Extracellular vesicle-derived miR-511-3p from hypoxia preconditioned adipose mesenchymal stem cells ameliorates spinal cord injury through the TRAF6/S1P axis.

Brain Res Bull. 2022-3

[9]
Hypoxic preconditioning rejuvenates mesenchymal stem cells and enhances neuroprotection following intracerebral hemorrhage via the miR-326-mediated autophagy.

Stem Cell Res Ther. 2021-7-22

[10]
Small extracellular vesicles obtained from hypoxic mesenchymal stromal cells have unique characteristics that promote cerebral angiogenesis, brain remodeling and neurological recovery after focal cerebral ischemia in mice.

Basic Res Cardiol. 2021-6-8

引用本文的文献

[1]
Advanced nanotherapies for precision treatment of inflammatory lung diseases.

Bioact Mater. 2025-7-20

[2]
Olfactory mucosal mesenchymal stem cells delivered by gelatin sponge scaffolds promote functional recovery of spinal cord injury.

Front Bioeng Biotechnol. 2025-7-9

[3]
Ex Vivo Preconditioning as a Useful Tool for Modification of the Extracellular Matrix of Multipotent Mesenchymal Stromal Cells.

Int J Mol Sci. 2025-6-30

[4]
Potential of miR-192-5p as a diagnostic marker for children with severe pneumonia and respiratory failure and its predictive value for prognosis.

Cent Eur J Immunol. 2025

[5]
Hypoxia preconditioned MSC exosomes attenuate high-altitude cerebral edema via the miR-125a-5p/RTEF-1 axis to protect vascular endothelial cells.

Bioact Mater. 2025-6-18

[6]
Proteins from Stressed Mesenchymal Stem Cells Can Repair Hair Follicles and Promote Hair Regeneration.

ACS Pharmacol Transl Sci. 2025-5-24

[7]
DeSUMOylation of IGF2BP2 Promotes Neuronal Differentiation of OM-MSCs by Stabilizing SOX11 to Ameliorate Brain Injury After Intracerebral Hemorrhage.

CNS Neurosci Ther. 2025-6

[8]
Preventing MSC aging and enhancing immunomodulation: Novel strategies for cell-based therapies.

Regen Ther. 2025-5-5

[9]
Mesenchymal stem cell extracellular vesicle vascularization bioactivity and production yield are responsive to cell culture substrate stiffness.

Bioeng Transl Med. 2025-1-7

[10]
Gene expression profiles of angiogenesis markers and microRNA-128 from the secretome of umbilical cord mesenchymal stem cells from .

Vet World. 2025-3

本文引用的文献

[1]
Small extracellular vesicles obtained from hypoxic mesenchymal stromal cells have unique characteristics that promote cerebral angiogenesis, brain remodeling and neurological recovery after focal cerebral ischemia in mice.

Basic Res Cardiol. 2021-6-8

[2]
Ischemic-hypoxic preconditioning enhances the mitochondrial function recovery of transplanted olfactory mucosa mesenchymal stem cells via miR-181a signaling in ischemic stroke.

Aging (Albany NY). 2021-4-4

[3]
Small extracellular vesicles containing miR-486-5p promote angiogenesis after myocardial infarction in mice and nonhuman primates.

Sci Transl Med. 2021-3-10

[4]
Mitochondria-Rich Extracellular Vesicles From Autologous Stem Cell-Derived Cardiomyocytes Restore Energetics of Ischemic Myocardium.

J Am Coll Cardiol. 2021-3-2

[5]
Olfactory ecto-mesenchymal stem cell-derived exosomes ameliorate murine Sjögren's syndrome by modulating the function of myeloid-derived suppressor cells.

Cell Mol Immunol. 2021-2

[6]
Olfactory Mucosa Mesenchymal Stem Cells Ameliorate Cerebral Ischemic/Reperfusion Injury Through Modulation of UBIAD1 Expression.

Front Cell Neurosci. 2020-11-12

[7]
Mechanism of Human Umbilical Cord Mesenchymal Stem Cells Derived-Extracellular Vesicle in Cerebral Ischemia-Reperfusion Injury.

Neurochem Res. 2021-3

[8]
Olfactory Mucosa Mesenchymal Stem Cells Alleviate Cerebral Ischemia/Reperfusion Injury Golgi Apparatus Secretory Pathway Ca -ATPase Isoform1.

Front Cell Dev Biol. 2020-10-30

[9]
Insight into the proteomic profiling of exosomes secreted by human OM-MSCs reveals a new potential therapy.

Biomed Pharmacother. 2020-11

[10]
Hypoxia-preconditioned olfactory mucosa mesenchymal stem cells abolish cerebral ischemia/reperfusion-induced pyroptosis and apoptotic death of microglial cells by activating HIF-1α.

Aging (Albany NY). 2020-6-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索