Suppr超能文献

基于超网络的物理驱动的CT成像个性化联邦学习

Hypernetwork-Based Physics-Driven Personalized Federated Learning for CT Imaging.

作者信息

Yang Ziyuan, Xia Wenjun, Lu Zexin, Chen Yingyu, Li Xiaoxiao, Zhang Yi

出版信息

IEEE Trans Neural Netw Learn Syst. 2025 Feb;36(2):3136-3150. doi: 10.1109/TNNLS.2023.3338867. Epub 2025 Feb 6.

Abstract

In clinical practice, computed tomography (CT) is an important noninvasive inspection technology to provide patients' anatomical information. However, its potential radiation risk is an unavoidable problem that raises people's concerns. Recently, deep learning (DL)-based methods have achieved promising results in CT reconstruction, but these methods usually require the centralized collection of large amounts of data for training from specific scanning protocols, which leads to serious domain shift and privacy concerns. To relieve these problems, in this article, we propose a hypernetwork-based physics-driven personalized federated learning method (HyperFed) for CT imaging. The basic assumption of the proposed HyperFed is that the optimization problem for each domain can be divided into two subproblems: local data adaption and global CT imaging problems, which are implemented by an institution-specific physics-driven hypernetwork and a global-sharing imaging network, respectively. Learning stable and effective invariant features from different data distributions is the main purpose of global-sharing imaging network. Inspired by the physical process of CT imaging, we carefully design physics-driven hypernetwork for each domain to obtain hyperparameters from specific physical scanning protocol to condition the global-sharing imaging network, so that we can achieve personalized local CT reconstruction. Experiments show that HyperFed achieves competitive performance in comparison with several other state-of-the-art methods. It is believed as a promising direction to improve CT imaging quality and personalize the needs of different institutions or scanners without data sharing. Related codes have been released at https://github.com/Zi-YuanYang/HyperFed.

摘要

在临床实践中,计算机断层扫描(CT)是一种重要的无创检查技术,用于提供患者的解剖信息。然而,其潜在的辐射风险是一个不可避免的问题,引发了人们的关注。最近,基于深度学习(DL)的方法在CT重建方面取得了可喜的成果,但这些方法通常需要从特定扫描协议中集中收集大量数据进行训练,这导致了严重的领域偏移和隐私问题。为了解决这些问题,在本文中,我们提出了一种基于超网络的物理驱动个性化联邦学习方法(HyperFed)用于CT成像。所提出的HyperFed的基本假设是,每个领域的优化问题可以分为两个子问题:局部数据适应和全局CT成像问题,分别由特定机构的物理驱动超网络和全局共享成像网络实现。从不同数据分布中学习稳定有效的不变特征是全局共享成像网络的主要目的。受CT成像物理过程的启发,我们为每个领域精心设计物理驱动超网络,从特定物理扫描协议中获取超参数来调整全局共享成像网络,从而实现个性化的局部CT重建。实验表明,与其他几种先进方法相比,HyperFed具有竞争力的性能。它被认为是在不进行数据共享的情况下提高CT成像质量并满足不同机构或扫描仪个性化需求的一个有前途的方向。相关代码已在https://github.com/Zi-YuanYang/HyperFed上发布。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验