Suppr超能文献

联邦学习的医学成像应用

Medical Imaging Applications of Federated Learning.

作者信息

Sandhu Sukhveer Singh, Gorji Hamed Taheri, Tavakolian Pantea, Tavakolian Kouhyar, Akhbardeh Alireza

机构信息

Biomedical Engineering Program, University of North Dakota, Grand Forks, ND 58202, USA.

SafetySpect Inc., 4200 James Ray Dr., Grand Forks, ND 58202, USA.

出版信息

Diagnostics (Basel). 2023 Oct 6;13(19):3140. doi: 10.3390/diagnostics13193140.

Abstract

Since its introduction in 2016, researchers have applied the idea of Federated Learning (FL) to several domains ranging from edge computing to banking. The technique's inherent security benefits, privacy-preserving capabilities, ease of scalability, and ability to transcend data biases have motivated researchers to use this tool on healthcare datasets. While several reviews exist detailing FL and its applications, this review focuses solely on the different applications of FL to medical imaging datasets, grouping applications by diseases, modality, and/or part of the body. This Systematic Literature review was conducted by querying and consolidating results from ArXiv, IEEE Xplorer, and PubMed. Furthermore, we provide a detailed description of FL architecture, models, descriptions of the performance achieved by FL models, and how results compare with traditional Machine Learning (ML) models. Additionally, we discuss the security benefits, highlighting two primary forms of privacy-preserving techniques, including homomorphic encryption and differential privacy. Finally, we provide some background information and context regarding where the contributions lie. The background information is organized into the following categories: architecture/setup type, data-related topics, security, and learning types. While progress has been made within the field of FL and medical imaging, much room for improvement and understanding remains, with an emphasis on security and data issues remaining the primary concerns for researchers. Therefore, improvements are constantly pushing the field forward. Finally, we highlighted the challenges in deploying FL in medical imaging applications and provided recommendations for future directions.

摘要

自2016年被引入以来,研究人员已将联邦学习(FL)的理念应用于从边缘计算到银行业等多个领域。该技术固有的安全优势、隐私保护能力、易于扩展的特性以及超越数据偏差的能力,促使研究人员将此工具用于医疗保健数据集。虽然已有若干综述详细介绍了联邦学习及其应用,但本综述仅聚焦于联邦学习在医学影像数据集上的不同应用,按疾病、模态和/或身体部位对应用进行分类。本系统文献综述通过查询和整合来自ArXiv、IEEE Xplorer和PubMed的结果进行。此外,我们详细描述了联邦学习架构、模型、联邦学习模型所取得的性能描述,以及结果与传统机器学习(ML)模型的比较情况。此外,我们讨论了安全优势,重点介绍了两种主要的隐私保护技术形式,包括同态加密和差分隐私。最后,我们提供了一些关于贡献所在之处的背景信息和上下文。背景信息分为以下几类:架构/设置类型、数据相关主题、安全性和学习类型。虽然在联邦学习和医学影像领域已取得进展,但仍有很大的改进和理解空间,安全和数据问题仍是研究人员的主要关注点。因此,改进不断推动该领域向前发展。最后,我们强调了在医学影像应用中部署联邦学习的挑战,并为未来方向提供了建议。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65a9/10572559/b21382fdbff8/diagnostics-13-03140-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验