Suppr超能文献

多发性硬化病变分割:重新审视联邦学习的加权机制。

Multiple sclerosis lesion segmentation: revisiting weighting mechanisms for federated learning.

作者信息

Liu Dongnan, Cabezas Mariano, Wang Dongang, Tang Zihao, Bai Lei, Zhan Geng, Luo Yuling, Kyle Kain, Ly Linda, Yu James, Shieh Chun-Chien, Nguyen Aria, Kandasamy Karuppiah Ettikan, Sullivan Ryan, Calamante Fernando, Barnett Michael, Ouyang Wanli, Cai Weidong, Wang Chenyu

机构信息

School of Computer Science, The University of Sydney, Sydney, NSW, Australia.

Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia.

出版信息

Front Neurosci. 2023 May 18;17:1167612. doi: 10.3389/fnins.2023.1167612. eCollection 2023.

Abstract

BACKGROUND AND INTRODUCTION

Federated learning (FL) has been widely employed for medical image analysis to facilitate multi-client collaborative learning without sharing raw data. Despite great success, FL's applications remain suboptimal in neuroimage analysis tasks such as lesion segmentation in multiple sclerosis (MS), due to variance in lesion characteristics imparted by different scanners and acquisition parameters.

METHODS

In this work, we propose the first FL MS lesion segmentation framework via two effective re-weighting mechanisms. Specifically, a learnable weight is assigned to each local node during the aggregation process, based on its segmentation performance. In addition, the segmentation loss function in each client is also re-weighted according to the lesion volume for the data during training.

RESULTS

The proposed method has been validated on two FL MS segmentation scenarios using public and clinical datasets. Specifically, the case-wise and voxel-wise Dice score of the proposed method under the first public dataset is 65.20 and 74.30, respectively. On the second in-house dataset, the case-wise and voxel-wise Dice score is 53.66, and 62.31, respectively.

DISCUSSIONS AND CONCLUSIONS

The Comparison experiments on two FL MS segmentation scenarios using public and clinical datasets have demonstrated the effectiveness of the proposed method by significantly outperforming other FL methods. Furthermore, the segmentation performance of FL incorporating our proposed aggregation mechanism can achieve comparable performance to that from centralized training with all the raw data.

摘要

背景与引言

联邦学习(FL)已被广泛应用于医学图像分析,以促进多客户端协作学习而无需共享原始数据。尽管取得了巨大成功,但由于不同扫描仪和采集参数所赋予的病变特征存在差异,FL在神经图像分析任务(如多发性硬化症(MS)病变分割)中的应用仍不尽人意。

方法

在这项工作中,我们通过两种有效的重新加权机制提出了首个FL MS病变分割框架。具体而言,在聚合过程中根据每个本地节点的分割性能为其分配一个可学习的权重。此外,在训练期间,每个客户端的分割损失函数也根据数据的病变体积进行重新加权。

结果

所提出的方法已在使用公共和临床数据集的两种FL MS分割场景中得到验证。具体而言,在第一个公共数据集下,所提出方法的逐例和逐体素骰子系数分别为65.20和74.30。在第二个内部数据集上,逐例和逐体素骰子系数分别为53.66和62.31。

讨论与结论

使用公共和临床数据集在两种FL MS分割场景上进行的对比实验表明,所提出的方法通过显著优于其他FL方法而有效。此外,结合我们提出的聚合机制的FL分割性能可以达到与使用所有原始数据进行集中训练相当的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80cf/10232857/5fd5c25112ad/fnins-17-1167612-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验