Bejjam Kiranmai, Basuthkar Umang Sujeet
Department of CSE, Keshav Memorial Institute of Technology, Narayanguda, India.
Department of IT, Keshav Memorial Institute of Technology, Narayanguda, India.
Recent Adv Food Nutr Agric. 2025;16(1):57-69. doi: 10.2174/012772574X281849240130120235.
Accurate prediction of breeding values is challenging due to the genotype-phenotype relationship is crucial and necessary for producing crops with elite genotypes. This paper is about investigating and predicting the phenotypic trait Height and Yeild in a genotype.
Most of the existing studies focus on genetic methods or Machine learning models, in this, we implemented a hybrid combination of genetic methods and machine learning models that accurately predicted phenotypic trait yield, height and subpopulation.
Our proposed methodology for genomic prediction of yield in (rice) involves a two-level classification approach. First, we classify biological sequences and cluster them using the UPGMA algorithm on a phylogenetic tree. Then, we use advanced machine learning techniques like Random Forest, and K-Nearest Neighbours to predict GEBVs with 85-95% accuracy on rice subpopulations.
we achieved an accuracy of 93% when compared with other stated literature in this paper.
This approach overcomes limitations and effectively enhances crop breeding by capturing the genotype-phenotype relationship.
由于基因型与表型的关系对于培育具有优良基因型的作物至关重要且必不可少,因此准确预测育种值具有挑战性。本文旨在研究和预测某一基因型中的表型性状高度和产量。
现有的大多数研究集中在遗传方法或机器学习模型上,在此,我们实现了遗传方法和机器学习模型的混合组合,能够准确预测表型性状产量、高度和亚群。
我们提出的用于水稻产量基因组预测的方法涉及两级分类方法。首先,我们对生物序列进行分类,并使用UPGMA算法在系统发育树上对它们进行聚类。然后,我们使用随机森林和K近邻等先进的机器学习技术,在水稻亚群上以85%-95%的准确率预测基因组估计育种值(GEBVs)。
与本文中其他所述文献相比,我们达到了93%的准确率。
该方法克服了局限性,并通过捕捉基因型与表型的关系有效地加强了作物育种。