Wang Hao, Yan Shen, Wang Wenxi, Chen Yongming, Hong Jingpeng, He Qiang, Diao Xianmin, Lin Yunan, Chen Yanqing, Cao Yongsheng, Guo Weilong, Fang Wei
State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
Plant Commun. 2025 Mar 10;6(3):101223. doi: 10.1016/j.xplc.2024.101223. Epub 2024 Dec 16.
Machine learning and deep learning are extensively employed in genomic selection (GS) to expedite the identification of superior genotypes and accelerate breeding cycles. However, a significant challenge with current data-driven deep learning models in GS lies in their low robustness and poor interpretability. To address these challenges, we developed Cropformer, a deep learning framework for predicting crop phenotypes and exploring downstream tasks. This framework combines convolutional neural networks with multiple self-attention mechanisms to improve accuracy. The ability of Cropformer to predict complex phenotypic traits was extensively evaluated on more than 20 traits across five major crops: maize, rice, wheat, foxtail millet, and tomato. Evaluation results show that Cropformer outperforms other GS methods in both precision and robustness, achieving up to a 7.5% improvement in prediction accuracy compared to the runner-up model. Additionally, Cropformer enhances the analysis and mining of genes associated with traits. We identified numerous single nucleotide polymorphisms (SNPs) with potential effects on maize phenotypic traits and revealed key genetic variations underlying these differences. Cropformer represents a significant advancement in predictive performance and gene identification, providing a powerful general tool for improving genomic design in crop breeding. Cropformer is freely accessible at https://cgris.net/cropformer.
机器学习和深度学习在基因组选择(GS)中被广泛应用,以加快优良基因型的鉴定并加速育种周期。然而,当前GS中数据驱动的深度学习模型面临的一个重大挑战在于其低稳健性和较差的可解释性。为应对这些挑战,我们开发了Cropformer,这是一个用于预测作物表型和探索下游任务的深度学习框架。该框架将卷积神经网络与多种自注意力机制相结合以提高准确性。我们在玉米、水稻、小麦、谷子和番茄这五种主要作物的20多个性状上广泛评估了Cropformer预测复杂表型性状的能力。评估结果表明,Cropformer在精度和稳健性方面均优于其他GS方法,与亚军模型相比,预测准确率提高了7.5%。此外,Cropformer增强了对与性状相关基因的分析和挖掘。我们鉴定出了许多对玉米表型性状有潜在影响的单核苷酸多态性(SNP),并揭示了这些差异背后的关键遗传变异。Cropformer在预测性能和基因鉴定方面取得了重大进展,为改进作物育种中的基因组设计提供了一个强大的通用工具。可通过https://cgris.net/cropformer免费访问Cropformer。