Suppr超能文献

基于纸的比色传感器使用双金属镍-钴硒纳米酶结合人工神经网络辅助智能手机上的 HO 检测。

Paper-based colorimetric sensor using bimetallic Nickel-Cobalt selenides nanozyme with artificial neural network-assisted for detection of HO on smartphone.

机构信息

Tianjin Engineering Research Center of Civil Aviation Energy Environment and Green Development, School of Transportation Science and Engineering, Civil Aviation University of China, Tianjin 300300, PR China.

The PLA Rocket Force Characteristic Medical Center, Beijing 100088, PR China.

出版信息

Spectrochim Acta A Mol Biomol Spectrosc. 2024 Apr 15;311:124038. doi: 10.1016/j.saa.2024.124038. Epub 2024 Feb 13.

Abstract

Paper-based analytical devices (PADs) integrated with smartphones have shown great potential in various fields, but they also face challenges such as single signal reading, complex data processing and significant environmental impacting. In this study, a colorimetric PAD platform has been proposed using bimetallic nickel-cobalt selenides as highly active peroxidase mimic, smartphone with 3D-printing dark-cavity as a portable detector and an artificial neural network (ANN) model as multi-signal processing tool. Notably, the optimized nickel-cobalt selenides (NiCoSe with Ni to Co ratio of 3/1) exhibit excellent peoxidase-mimetic activities and are capable of catalyzing the oxidation of four chromogenic reagents in the presence of HO. Using a smartphone with image capture function as a friendly signal readout tool, the NiCoSe based four channel colorimetric sensing paper is used for multi-signal quantitative analysis of HO by determining the Grey, red (R), green (G) and blue (B) channel values of the captured pictures. An intelligent on-site detection method for HO has been constructed by combining an ANN model and a self-programmed easy-to-use smartphone APP with a dynamic range of 5 μM to 2 M. Noteworthy, machine learning-assisted smartphone sensing devices based on nanozyme and 3D printing technology provide new insights and universal strategies for visual ultrasensitive detection in a variety of fields, including environments monitoring, biomedical diagnosis and safety screening.

摘要

基于纸的分析器件 (PADs) 与智能手机集成在各个领域显示出巨大的潜力,但它们也面临着单一信号读取、复杂数据处理和重大环境影响等挑战。在这项研究中,提出了一种使用双金属镍-钴硒化物作为高活性过氧化物酶模拟物、具有 3D 打印暗腔的智能手机作为便携式检测器以及人工神经网络 (ANN) 模型作为多信号处理工具的比色 PAD 平台。值得注意的是,优化后的镍-钴硒化物 (NiCoSe,Ni 与 Co 的比例为 3/1) 表现出优异的过氧化物酶模拟活性,能够在 HO 的存在下催化四种显色试剂的氧化。使用具有图像捕获功能的智能手机作为友好的信号读出工具,基于 NiCoSe 的四通道比色传感纸用于通过确定捕获图像的灰色、红色 (R)、绿色 (G) 和蓝色 (B) 通道值对 HO 进行多信号定量分析。通过结合 ANN 模型和一个自我编写的易于使用的智能手机应用程序(动态范围为 5 μM 至 2 M),构建了一种用于 HO 的智能现场检测方法。值得注意的是,基于纳米酶和 3D 打印技术的机器学习辅助智能手机感测设备为视觉超灵敏检测在包括环境监测、生物医学诊断和安全筛选在内的各种领域提供了新的见解和通用策略。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验