Suppr超能文献

基于适体功能化FeO@Au纳米复合材料的太赫兹超材料生物传感器对金黄色葡萄球菌的快速灵敏检测

Rapid and sensitive detection of Staphylococcus aureus using a THz metamaterial biosensor based on aptamer-functionalized FeO@Au nanocomposites.

作者信息

Yu Wenjing, Li Jining, Huang Guorong, He Zhe, Tian Huiyan, Xie Fengxin, Jin Weidong, Huang Qing, Fu Weiling, Yang Xiang

机构信息

Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.

Institute of Laser and Opto-electronics, School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China.

出版信息

Talanta. 2024 May 15;272:125760. doi: 10.1016/j.talanta.2024.125760. Epub 2024 Feb 15.

Abstract

Staphylococcus aureus (S. aureus) poses a serious threat to global public health, necessitating the establishment of rapid and simple tools for its accurate identification. Herein, we developed a terahertz (THz) metamaterial biosensor based on aptamer-functionalized FeO@Au nanocomposites for quantitative S. aureus assays in different clinical samples. FeO@Au@Cys@Apt has the dual advantages of magnetism and a high refractive index in the THz range and was used to rapidly separate and enrich target bacteria in a complex environmental solution. Furthermore, conjugation to the nanocomposites significantly increased the resonance frequency shift of the THz metamaterial after target loading. Our results showed that the shifts in the metamaterial resonance frequency were linearly related to S. aureus concentrations ranging from 1.0 × 10 to 1.0 × 10 CFU/mL, with a detection limit of 4.78 × 10 CFU/mL. The biosensor was further applied to S. aureus detection in spiked human urine and blood with satisfactory recoveries (82.4-109.6%). Our approach also demonstrated strong concordance with traditional plate counting (R = 0.99306) while significantly lowering the analysis time from 24 h to <1 h. In conclusion, the proposed biosensor can not only perform culture-free and extraction-free detection of target bacteria but can also be easily extended to the determination of other pathogenic bacteria, rendering it suitable for various bacteria-related disease diagnoses.

摘要

金黄色葡萄球菌对全球公共卫生构成严重威胁,因此需要建立快速简便的工具来准确鉴定它。在此,我们开发了一种基于适体功能化的FeO@Au纳米复合材料的太赫兹(THz)超材料生物传感器,用于对不同临床样本中的金黄色葡萄球菌进行定量检测。FeO@Au@Cys@Apt在太赫兹范围内具有磁性和高折射率的双重优势,可用于在复杂环境溶液中快速分离和富集目标细菌。此外,与纳米复合材料结合后,目标物负载后太赫兹超材料的共振频率偏移显著增加。我们的结果表明,超材料共振频率的偏移与金黄色葡萄球菌浓度在1.0×10至1.0×10 CFU/mL范围内呈线性相关,检测限为4.78×10 CFU/mL。该生物传感器进一步应用于加标的人尿液和血液中的金黄色葡萄球菌检测,回收率令人满意(82.4-109.6%)。我们的方法还与传统平板计数法具有高度一致性(R = 0.99306),同时将分析时间从24小时显著缩短至<1小时。总之,所提出的生物传感器不仅可以对目标细菌进行免培养和免提取检测,还可以轻松扩展到其他病原菌的测定,适用于各种与细菌相关的疾病诊断。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验