Department of Mechanical Engineering, Aragon Institute for Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain.
Department of Mechanical Engineering, Aragon Institute for Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain.
Med Eng Phys. 2024 Jan;123:104092. doi: 10.1016/j.medengphy.2023.104092. Epub 2023 Dec 21.
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is widely used to assess tissue vascularization, particularly in oncological applications. However, the most widely used pharmacokinetic (PK) models do not account for contrast agent (CA) diffusion between neighboring voxels, which can limit the accuracy of the results, especially in cases of heterogeneous tumors. To address this issue, previous works have proposed algorithms that incorporate diffusion phenomena into the formulation. However, these algorithms often face convergence problems due to the ill-posed nature of the problem. In this work, we present a new approach to fitting DCE-MRI data that incorporates CA diffusion by using Physics-Informed Neural Networks (PINNs). PINNs can be trained to fit measured data obtained from DCE-MRI while ensuring the mass conservation equation from the PK model. We compare the performance of PINNs to previous algorithms on different 1D cases inspired by previous works from literature. Results show that PINNs retrieve vascularization parameters more accurately from diffusion-corrected tracer-kinetic models. Furthermore, we demonstrate the robustness of PINNs compared to other traditional algorithms when faced with noisy or incomplete data. Overall, our results suggest that PINNs can be a valuable tool for improving the accuracy of DCE-MRI data analysis, particularly in cases where CA diffusion plays a significant role.
动态对比增强磁共振成像(DCE-MRI)广泛用于评估组织血管化,特别是在肿瘤学应用中。然而,最广泛使用的药代动力学(PK)模型没有考虑到相邻体素之间的对比剂(CA)扩散,这可能会限制结果的准确性,特别是在肿瘤异质性的情况下。为了解决这个问题,以前的工作已经提出了将扩散现象纳入公式的算法。然而,由于问题的不适定性,这些算法经常面临收敛问题。在这项工作中,我们提出了一种新的方法,通过使用物理信息神经网络(PINNs)来拟合 DCE-MRI 数据,该方法可以通过使用物理信息神经网络(PINNs)来拟合 DCE-MRI 数据,同时确保 PK 模型的质量守恒方程。我们比较了 PINNs 与文献中以前的工作启发的不同 1D 情况下的以前算法的性能。结果表明,PINNs 从经过扩散校正的示踪动力学模型中更准确地恢复了血管化参数。此外,我们还展示了 PINNs 与其他传统算法相比在面对嘈杂或不完整数据时的鲁棒性。总的来说,我们的结果表明,PINNs 可以成为提高 DCE-MRI 数据分析准确性的一种有价值的工具,特别是在 CA 扩散起着重要作用的情况下。