Université de Paris, U976 HIPI, Inserm, Paris, F-75006, France.
AP-HP, Hôpital Saint-Louis, 1 avenue Vellefaux, Paris, F-75010, France.
Adv Healthc Mater. 2024 Jun;13(14):e2302830. doi: 10.1002/adhm.202302830. Epub 2024 Feb 20.
Tissue engineering holds great promise for regenerative medicine, drug discovery, and as an alternative to animal models. However, as soon as the dimensions of engineered tissue exceed the diffusion limit of oxygen and nutriments, a necrotic core forms leading to irreversible damage. To overcome this constraint, the establishment of a functional perfusion network is essential. In this work, digital light processing bioprinting is used to encapsulate endothelial progenitor cells (EPCs) in 3D light-cured hydrogel scaffolds to guide them toward vascular network formation. In these scaffolds, EPCs proliferate and self-organize within a few days into branched tubular structures with predefined geometry, forming capillary-like vascular tubes or trees of diameters in the range of 10 to 100 µm. Presenting a confluent monolayer wall of cells strongly connect by tight junctions around a central lumen-like space, these structures can be microinjected with a fluorescent dye and are stable for several weeks in vitro. These endothelial structures can be recovered and manipulated in an alginate patch without altering their shape or viability. This approach opens new opportunities for future applications, such as stacking with other cell sheets or multicellular constructs to yield bioengineered tissue with higher complexity and functionality.
组织工程学在再生医学、药物发现以及替代动物模型方面具有巨大的潜力。然而,一旦工程组织的尺寸超过氧气和营养物质的扩散极限,就会形成坏死核心,导致不可逆转的损伤。为了克服这一限制,建立功能性灌注网络至关重要。在这项工作中,数字光处理生物打印技术被用于将内皮祖细胞(EPCs)封装在 3D 光固化水凝胶支架中,以引导它们形成血管网络。在这些支架中,EPCs 在几天内增殖并自我组织成具有预定几何形状的分支管状结构,形成类似于毛细血管的血管管或直径在 10 到 100µm 范围内的树状结构。这些结构呈现出细胞的连续单层壁,通过紧密连接强烈连接在中央类似管腔的空间周围,这些结构可以用荧光染料进行微注射,并在体外稳定数周。这些内皮结构可以在藻酸盐贴片中回收和操作,而不会改变其形状或活力。这种方法为未来的应用开辟了新的机会,例如与其他细胞片或多细胞构建体堆叠,以获得具有更高复杂性和功能的生物工程组织。