Suppr超能文献

基于影像组学模型预测分化型甲状腺癌的颈部淋巴结转移。

Prediction of cervical lymph node metastasis in differentiated thyroid cancer based on radiomics models.

机构信息

Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.

Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China.

出版信息

Br J Radiol. 2024 Feb 28;97(1155):526-534. doi: 10.1093/bjr/tqae010.

Abstract

OBJECTIVE

The accurate clinical diagnosis of cervical lymph node metastasis plays an important role in the treatment of differentiated thyroid cancer (DTC). This study aimed to explore and summarize a more objective approach to detect cervical malignant lymph node metastasis of DTC via radiomics models.

METHODS

PubMed, Web of Science, MEDLINE, EMBASE, and Cochrane databases were searched for all eligible studies. Articles using radiomics models based on ultrasound, computed tomography, or magnetic resonance imaging to assess cervical lymph node metastasis preoperatively were included. Characteristics and diagnostic accuracy measures were extracted. Bias and applicability judgments were evaluated by the revised QUADAS-2 tool. The estimates were pooled using a random-effects model. Additionally, the leave-one-out method was conducted to assess the heterogeneity.

RESULTS

Twenty-nine radiomics studies with 6160 validation set patients were included in the qualitative analysis, and 11 studies with 3863 validation set patients were included in the meta-analysis. Four of them had an external independent validation set. The studies were heterogeneous, and a significant risk of bias was found in 29 studies. Meta-analysis showed that the pooled sensitivity and specificity for preoperative prediction of lymph node metastasis via US-based radiomics were 0.81 (95% CI, 0.73-0.86) and 0.87 (95% CI, 0.83-0.91), respectively.

CONCLUSIONS

Although radiomics-based models for cervical lymphatic metastasis in DTC have been demonstrated to have moderate diagnostic capabilities, broader data, standardized radiomics features, robust feature selection, and model exploitation are still needed in the future.

ADVANCES IN KNOWLEDGE

The radiomics models showed great potential in detecting malignant lymph nodes in thyroid cancer.

摘要

目的

准确的临床诊断对分化型甲状腺癌(DTC)的治疗至关重要。本研究旨在通过放射组学模型探索和总结一种更客观的方法来检测 DTC 颈淋巴结转移。

方法

在 PubMed、Web of Science、MEDLINE、EMBASE 和 Cochrane 数据库中检索了所有符合条件的研究。纳入使用基于超声、计算机断层扫描或磁共振成像的放射组学模型评估术前颈淋巴结转移的研究。提取特征和诊断准确性测量值。使用修订后的 QUADAS-2 工具评估偏倚和适用性判断。使用随机效应模型对估计值进行汇总。此外,采用留一法评估异质性。

结果

29 项放射组学研究共纳入 6160 例验证集患者进行定性分析,11 项研究共纳入 3863 例验证集患者进行荟萃分析。其中 4 项研究有外部独立验证集。研究存在异质性,29 项研究存在显著偏倚风险。荟萃分析显示,基于 US 的放射组学术前预测淋巴结转移的敏感性和特异性分别为 0.81(95%CI,0.73-0.86)和 0.87(95%CI,0.83-0.91)。

结论

尽管基于放射组学的 DTC 颈淋巴结转移模型已被证明具有中等诊断能力,但未来仍需要更广泛的数据、标准化的放射组学特征、稳健的特征选择和模型开发。

知识进展

放射组学模型在检测甲状腺癌恶性淋巴结方面显示出巨大潜力。

相似文献

7
Development and validation of a CT-based radiomics nomogram for predicting cervical lymph node metastasis in papillary thyroid carcinoma.
Cancer Biomark. 2025 Apr;42(4):18758592251322028. doi: 10.1177/18758592251322028. Epub 2025 Apr 28.
10
Ultrasound Radiomics for Preoperative Prediction of Cervical Lymph Node Metastasis in Medullary Thyroid Carcinoma.
Br J Hosp Med (Lond). 2025 Feb 25;86(2):1-21. doi: 10.12968/hmed.2024.0376. Epub 2025 Feb 11.

本文引用的文献

5
Deep multimodal learning for lymph node metastasis prediction of primary thyroid cancer.
Phys Med Biol. 2022 Feb 1;67(3). doi: 10.1088/1361-6560/ac4c47.
7
Computed Tomography-Based Radiomics Model to Predict Central Cervical Lymph Node Metastases in Papillary Thyroid Carcinoma: A Multicenter Study.
Front Endocrinol (Lausanne). 2021 Oct 21;12:741698. doi: 10.3389/fendo.2021.741698. eCollection 2021.
8
Radiomics from Primary Tumor on Dual-Energy CT Derived Iodine Maps can Predict Cervical Lymph Node Metastasis in Papillary Thyroid Cancer.
Acad Radiol. 2022 Mar;29 Suppl 3:S222-S231. doi: 10.1016/j.acra.2021.06.014. Epub 2021 Aug 5.
9
Radiogenomic Analysis of Papillary Thyroid Carcinoma for Prediction of Cervical Lymph Node Metastasis: A Preliminary Study.
Front Oncol. 2021 Jun 29;11:682998. doi: 10.3389/fonc.2021.682998. eCollection 2021.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验