Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8501, Japan.
School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan.
J Plant Res. 2024 May;137(3):445-453. doi: 10.1007/s10265-024-01519-2. Epub 2024 Feb 17.
Thioredoxin (Trx) is a small redox mediator protein involved in the regulation of various chloroplast functions by modulating the redox state of Trx target proteins in ever-changing light environments. Using reducing equivalents produced by the photosynthetic electron transport chain, Trx reduces the disulfide bonds on target proteins and generally turns on their activities. While the details of the protein-reduction mechanism by Trx have been well investigated, the oxidation mechanism that counteracts it has long been unclear. We have recently demonstrated that Trx-like proteins such as Trx-like2 and atypical Cys His-rich Trx (ACHT) can function as protein oxidation factors in chloroplasts. Our latest study on transgenic Arabidopsis plants indicated that the ACHT isoform ACHT2 is involved in regulating the thermal dissipation of light energy. To understand the role of ACHT2 in vivo, we characterized phenotypic changes specifically caused by ACHT2 overexpression in Arabidopsis. ACHT2-overexpressing plants showed growth defects, especially under high light conditions. This growth phenotype was accompanied with the impaired reductive activation of Calvin-Benson cycle enzymes, enhanced thermal dissipation of light energy, and decreased photosystem II activity. Overall, ACHT2 overexpression promoted protein oxidation that led to the inadequate activation of Calvin-Benson cycle enzymes in light and consequently induced negative feedback control of the photosynthetic electron transport chain. This study highlights the importance of the balance between protein reduction and oxidation in chloroplasts for optimal photosynthetic performance and plant growth.
硫氧还蛋白(Trx)是一种小的氧化还原介体蛋白,通过调节不断变化的光环境中 Trx 靶蛋白的氧化还原状态,参与各种叶绿体功能的调节。Trx 使用光合作用电子传递链产生的还原当量,还原靶蛋白上的二硫键,通常会激活它们的活性。虽然 Trx 对蛋白质还原的机制细节已经得到了很好的研究,但与之相反的氧化机制长期以来一直不清楚。我们最近证明,Trx 样蛋白,如 Trx 样 2 和非典型 Cys His 丰富的 Trx(ACHT),可以在叶绿体中作为蛋白质氧化因子发挥作用。我们最近对转基因拟南芥植物的研究表明,ACHT 同工型 ACHT2 参与调节光能的热耗散。为了了解 ACHT2 在体内的作用,我们专门描述了 ACHT2 在拟南芥中过表达引起的表型变化。ACHT2 过表达植物表现出生长缺陷,特别是在高光条件下。这种生长表型伴随着 Calvin-Benson 循环酶还原激活受损、光能热耗散增强和光系统 II 活性降低。总的来说,ACHT2 过表达促进了蛋白质氧化,导致 Calvin-Benson 循环酶在光下的激活不足,从而诱导了光合作用电子传递链的负反馈控制。这项研究强调了叶绿体中蛋白质还原和氧化之间的平衡对于最佳光合作用性能和植物生长的重要性。