Fukushi Yuka, Yokochi Yuichi, Hisabori Toru, Yoshida Keisuke
Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8501, Japan.
The Graduate University for Advanced Studies, SOKENDAI, Shonan Village, Hayama, Kanagawa, 240-0193, Japan.
J Plant Res. 2025 Mar;138(2):337-345. doi: 10.1007/s10265-024-01611-7. Epub 2024 Dec 21.
Thiol/disulfide-based redox regulation is a key mechanism for modulating protein functions in response to changes in cellular redox status. Two thioredoxin (Trx)-like proteins [atypical Cys His-rich Trx (ACHT) and Trx-like2 (TrxL2)] have been identified as crucial for oxidizing and deactivating several chloroplast enzymes during light-to-dark transitions; however, their roles remain to be fully understood. In this study, we investigated the functions of Trx-like proteins in seed development. Using the CRISPR/Cas9 system, we generated an Arabidopsis quadruple mutant defective in ACHT1, ACHT2, TrxL2.1, and TrxL2.2 (acht/trxl2). This mutant showed increased seed lethality prior to maturation, with embryogenesis impaired primarily during the heart and torpedo stages, which are critical phases for plastid differentiation into chloroplasts. Using transgenic plants expressing EGFP-fused proteins, we confirmed that ACHT and TrxL2 are localized in plastids during embryogenesis. Additionally, seed development in the acht/trxl2 mutant was further impaired under extended darkness and could not be recovered through complementation with variants of ACHT or TrxL2 lacking the redox-active Cys residue (replaced by Ser). These findings indicate that the protein-oxidation functions of ACHT and TrxL2 are important for plastid differentiation into chloroplasts, embryogenesis, and seed development.
基于硫醇/二硫键的氧化还原调节是一种关键机制,可根据细胞氧化还原状态的变化来调节蛋白质功能。已鉴定出两种类硫氧还蛋白(Trx)[非典型富含半胱氨酸组氨酸的Trx(ACHT)和类Trx2(TrxL2)]对于在光暗转换期间氧化和失活几种叶绿体酶至关重要;然而,它们的作用仍有待充分了解。在本研究中,我们研究了类Trx蛋白在种子发育中的功能。利用CRISPR/Cas9系统,我们构建了一个在ACHT1、ACHT2、TrxL2.1和TrxL2.2中存在缺陷的拟南芥四重突变体(acht/trxl2)。该突变体在成熟前种子致死率增加,胚胎发生主要在心脏期和鱼雷期受损,这两个时期是质体分化为叶绿体的关键阶段。利用表达EGFP融合蛋白的转基因植物,我们证实ACHT和TrxL2在胚胎发生过程中定位于质体。此外,acht/trxl2突变体在延长黑暗条件下种子发育进一步受损,并且通过用缺乏氧化还原活性半胱氨酸残基(被丝氨酸取代)的ACHT或TrxL2变体进行互补无法恢复。这些发现表明ACHT和TrxL2的蛋白质氧化功能对于质体分化为叶绿体、胚胎发生和种子发育很重要。