Messerle Dominique Alya, Grauhan Nils F, Leukert Laura, Dapper Ann-Kathrin, Paul Roman H, Kronfeld Andrea, Al-Nawas Bilal, Krüger Maximilian, Brockmann Marc A, Othman Ahmed E, Altmann Sebastian
Department of Neuroradiology, University Medical Center Mainz, Johannes Gutenberg University, Langenbeckstr. 1, 55131, Mainz, Germany.
Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center Mainz, Johannes Gutenberg University, Rhabanusstr. 3/Tower A, 55118, Mainz, Germany.
Clin Neuroradiol. 2025 Jun 30. doi: 10.1007/s00062-025-01532-5.
We evaluated a dedicated dose-reduced UHR-CT for head and neck imaging, combined with a novel deep learning reconstruction algorithm to assess its impact on image quality and radiation exposure.
Retrospective analysis of ninety-eight consecutive patients examined using a new body weight-adapted protocol. Images were reconstructed using adaptive iterative dose reduction and advanced intelligent Clear-IQ engine with an already established (DL-1) and a newly implemented reconstruction algorithm (DL-2). Additional thirty patients were scanned without body-weight-adapted dose reduction (DL-1-SD). Three readers evaluated subjective image quality regarding image quality and assessment of several anatomic regions. For objective image quality, signal-to-noise ratio and contrast-to-noise ratio were calculated for temporalis and masseteric muscle and the floor of the mouth. Radiation dose was evaluated by comparing the computed tomography dose index (CTDIvol) values.
Deep learning-based reconstruction algorithms significantly improved subjective image quality (diagnostic acceptability: DL‑1 vs AIDR OR of 25.16 [6.30;38.85], p < 0.001 and DL‑2 vs AIDR 720.15 [410.14;> 999.99], p < 0.001). Although higher doses (DL-1-SD) resulted in significantly enhanced image quality, DL‑2 demonstrated significant superiority over all other techniques across all defined parameters (p < 0.001). Similar results were demonstrated for objective image quality, e.g. image noise (DL‑1 vs AIDR OR of 19.0 [11.56;31.24], p < 0.001 and DL‑2 vs AIDR > 999.9 [825.81;> 999.99], p < 0.001). Using weight-adapted kV reduction, very low radiation doses could be achieved (CTDIvol: 7.4 ± 4.2 mGy).
AI-based reconstruction algorithms in ultra-high resolution head and neck imaging provide excellent image quality while achieving very low radiation exposure.
我们评估了一种用于头颈部成像的专用低剂量UHR-CT,并结合一种新型深度学习重建算法,以评估其对图像质量和辐射暴露的影响。
对98例连续使用新的体重适应方案进行检查的患者进行回顾性分析。使用自适应迭代剂量降低和先进智能Clear-IQ引擎,采用已建立的(DL-1)和新实施的重建算法(DL-2)重建图像。另外30例患者未进行体重适应剂量降低扫描(DL-1-SD)。三名阅片者评估了关于图像质量和几个解剖区域评估的主观图像质量。对于客观图像质量,计算颞肌、咬肌和口底的信噪比和对比噪声比。通过比较计算机断层扫描剂量指数(CTDIvol)值评估辐射剂量。
基于深度学习的重建算法显著提高了主观图像质量(诊断可接受性:DL-1与AIDR的OR为25.16 [6.30;38.85],p<0.001;DL-2与AIDR的OR为720.15 [410.14;>999.99],p<0.001)。尽管较高剂量(DL-1-SD)导致图像质量显著提高,但DL-2在所有定义参数上均显示出优于所有其他技术(p<0.001)。客观图像质量也得到了类似的结果,例如图像噪声(DL-1与AIDR的OR为19.0 [11.56;31.24],p<0.001;DL-2与AIDR>999.9 [825.81;>999.99],p<0.001)。使用体重适应的kV降低,可以实现非常低的辐射剂量(CTDIvol:7.4±4.2 mGy)。
超高分辨率头颈部成像中基于人工智能的重建算法在实现极低辐射暴露的同时提供了优异的图像质量。