Wang Nan, Chen Peng, Xu Yuanyuan, Guo Lingxia, Li Xianxin, Yi Hualin, Larkin Robert M, Zhou Yongfeng, Deng Xiuxin, Xu Qiang
Institute of Horticultural Research, Hunan Academy of Agricultural Sciences, Changsha, China.
National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China.
Hortic Res. 2023 Dec 28;11(2):uhad268. doi: 10.1093/hr/uhad268. eCollection 2024 Feb.
Although revisiting the discoveries and implications of genetic variations using phased genomics is critical, such efforts are still lacking. Somatic mutations represent a crucial source of genetic diversity for breeding and are especially remarkable in heterozygous perennial and asexual crops. In this study, we focused on a diploid sweet orange () and constructed a haplotype-resolved genome using high fidelity (HiFi) reads, which revealed 10.6% new sequences. Based on the phased genome, we elucidate significant genetic admixtures and haplotype differences. We developed a somatic detection strategy that reveals hidden somatic mutations overlooked in a single reference genome. We generated a phased somatic variation map by combining high-depth whole-genome sequencing (WGS) data from 87 sweet orange somatic varieties. Notably, we found twice as many somatic mutations relative to a single reference genome. Using these hidden somatic mutations, we separated sweet oranges into seven major clades and provide insight into unprecedented genetic mosaicism and strong positive selection. Furthermore, these phased genomics data indicate that genomic heterozygous variations contribute to allele-specific expression during fruit development. By integrating allelic expression differences and somatic mutations, we identified a somatic mutation that induces increases in fruit size. Applications of phased genomics will lead to powerful approaches for discovering genetic variations and uncovering their effects in highly heterozygous plants. Our data provide insight into the hidden somatic mutation landscape in the sweet orange genome, which will facilitate citrus breeding.
尽管利用分阶段基因组学重新审视基因变异的发现及其影响至关重要,但目前仍缺乏此类研究。体细胞突变是育种中遗传多样性的关键来源,在杂合多年生和无性繁殖作物中尤为显著。在本研究中,我们聚焦于二倍体甜橙( ),并利用高保真(HiFi) reads构建了单倍型解析基因组,该基因组揭示了10.6%的新序列。基于分阶段基因组,我们阐明了显著的遗传混合和单倍型差异。我们开发了一种体细胞检测策略,该策略揭示了在单个参考基因组中被忽视的隐藏体细胞突变。我们通过整合87个甜橙体细胞品种的高深度全基因组测序(WGS)数据,生成了一个分阶段的体细胞变异图谱。值得注意的是,相对于单个参考基因组,我们发现的体细胞突变数量是其两倍。利用这些隐藏的体细胞突变,我们将甜橙分为七个主要分支,并深入了解了前所未有的遗传镶嵌现象和强烈的正选择。此外,这些分阶段基因组学数据表明,基因组杂合变异在果实发育过程中有助于等位基因特异性表达。通过整合等位基因表达差异和体细胞突变,我们鉴定出一个导致果实大小增加的体细胞突变。分阶段基因组学的应用将带来强大的方法,用于发现遗传变异并揭示其在高度杂合植物中的作用。我们的数据深入了解了甜橙基因组中隐藏的体细胞突变景观,这将有助于柑橘育种。