Gonçalves-Reis Maria, Proença Daniela, Frazão Laura P, Neto João L, Silva Sílvia, Pinto-Marques Hugo, Pereira-Leal José B, Cardoso Joana
Ophiomics - Precision Medicine, Lisbon, Portugal.
Hepato-Biliary-Pancreatic and Transplantation Centre, Curry Cabral Hospital, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal.
Pract Lab Med. 2024 Feb 5;39:e00365. doi: 10.1016/j.plabm.2024.e00365. eCollection 2024 Mar.
OBJECTIVES: To verify the analytical performance of the HepatoPredict kit, a novel tool developed to stratify Hepatocellular Carcinoma (HCC) patients according to their risk of relapse after a Liver Transplantation (LT). METHODS: The HepatoPredict tool combines clinical variables and a gene expression signature in an ensemble of machine-learning algorithms to forecast the benefit of a LT in HCC patients. To ensure the accuracy and reliability of this method, extensive analytical validation was conducted to verify its specificity and robustness. The experiments were designed following the guidelines for multi-target genomic assays such as ISO201395-2019, MIQE, CLSI-MM16, CLSI-MM17, and CLSI-EP17-A. The validation process included reproducibility between operators and between RNA extractions and RT-qPCR runs, and interference of input RNA levels or varying reagent levels. A recently retrained version of the HepatoPredict algorithms was also tested. RESULTS: The validation process demonstrated that the HepatoPredict kit met the required standards for robustness (p > 0.05), analytical specificity (inclusivity of 95 %), and sensitivity (LoB, LoD, linear range, and amplification efficiency between 90 and 110 %). The operator, equipment, input RNA, and reagents used had no significant effect on the HepatoPredict results. Additionally, the testing of a recently retrained version of the HepatoPredict algorithm, showed that this new version further improved the accuracy of the kit and performed better than existing clinical criteria in accurately identifying HCC patients who are more likely to benefit LT. CONCLUSIONS: Even with the introduced variations in molecular and clinical variables, the HepatoPredict kit's prognostic information remains consistent. It can accurately identify HCC patients who are more likely to benefit from a LT. Its robust performance also confirms that it can be easily integrated into standard diagnostic laboratories.
目的:验证HepatoPredict试剂盒的分析性能,这是一种旨在根据肝细胞癌(HCC)患者肝移植(LT)后复发风险进行分层的新型工具。 方法:HepatoPredict工具在一组机器学习算法中结合了临床变量和基因表达特征,以预测LT对HCC患者的益处。为确保该方法的准确性和可靠性,进行了广泛的分析验证以验证其特异性和稳健性。实验设计遵循多靶点基因组检测指南,如ISO201395 - 2019、MIQE、CLSI - MM16、CLSI - MM17和CLSI - EP17 - A。验证过程包括操作人员之间、RNA提取之间以及RT - qPCR运行之间的重现性,以及输入RNA水平或不同试剂水平的干扰。还测试了HepatoPredict算法最近重新训练的版本。 结果:验证过程表明,HepatoPredict试剂盒符合稳健性(p > 0.05)、分析特异性(包含率95%)和灵敏度(检测限、定量限、线性范围以及扩增效率在90%至110%之间)的要求标准。所使用的操作人员、设备、输入RNA和试剂对HepatoPredict结果没有显著影响。此外,对HepatoPredict算法最近重新训练版本的测试表明,这个新版本进一步提高了试剂盒的准确性,并且在准确识别更可能从LT中获益的HCC患者方面比现有临床标准表现更好。 结论:即使分子和临床变量存在引入的变化,HepatoPredict试剂盒的预后信息仍然一致。它可以准确识别更可能从LT中获益的HCC患者。其稳健的性能也证实它可以很容易地整合到标准诊断实验室中。
Diagnostics (Basel). 2021-10-28
Clin Liver Dis (Hoboken). 2021-6-4
World J Gastroenterol. 2019-6-7