School of Science, Jilin Institute of Chemical Technology, Jilin 130000, P.R. China.
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P.R. China.
J Chem Inf Model. 2024 Apr 8;64(7):2654-2669. doi: 10.1021/acs.jcim.3c01726. Epub 2024 Feb 19.
As is well-known, the process of developing new drugs is extremely expensive, whereas drug repurposing represents a promising approach to augment the efficiency of new drug development. While this method can indeed spare us from expensive drug toxicity and safety experiments, it still demands a substantial amount of time to carry out precise efficacy experiments for specific diseases, thereby consuming a significant quantity of resources. Therefore, if we can prescreen potential other indications for selected drugs, it could result in substantial cost savings. In light of this, this paper introduces a drug repurposing recommendation model called MRNDR, which stands for ulti-head attention-based ecommendation etwork for rug epurposing. This model serves as a prediction tool for drug-disease relationships, leveraging the multihead self-attention mechanism that demonstrates robust generalization capabilities. These capabilities stem not only from our extensive million-level training data set, BioRE (logy ecommended ntity data), but also from the utilization of the WRDS (eighted epresentation istance core) algorithm proposed by us. The MRNDR model has achieved new state-of-the-art results on the GP-KG public data set, with an MRR (Mean Reciprocal Rank) score of 0.308 and a Hits@10 score of 0.628. This represents significant improvements of 4.7% (MRR) and 18.1% (Hits@10) over the current best-performing models. Additionally, to further validate the practical utility of the model, we examined results recommended by MRNDR that were not present in the training data set. Some of these recommendations have undergone clinical trials, as evidenced by their presence on ClinicalTrials.gov and the China Clinical Trials Center, indirectly confirming the applicability of MRNDR. The MRNDR model can predict the reusability of candidate drugs, reducing the need for manual expert assessments and enabling efficient drug repurposing.
众所周知,开发新药的过程极其昂贵,而药物再利用是提高新药开发效率的一种很有前途的方法。虽然这种方法确实可以避免昂贵的药物毒性和安全性实验,但仍然需要大量的时间来对特定疾病进行精确的疗效实验,从而消耗大量的资源。因此,如果我们可以预先筛选出选定药物的潜在其他适应症,就可以节省大量的成本。有鉴于此,本文介绍了一种名为 MRNDR 的药物再利用推荐模型,它代表基于多头部注意力的药物再利用推荐网络。该模型是一种用于预测药物-疾病关系的预测工具,利用多头部自注意力机制,展示了强大的泛化能力。这些能力不仅来自我们广泛的百万级训练数据集 BioRE(生物学推荐实体数据),还来自我们提出的 WRDS(加权表示相似度核心)算法的使用。MRNDR 模型在 GP-KG 公共数据集上取得了新的最新结果,MRR(平均倒数排名)得分为 0.308,Hits@10 得分为 0.628。这代表着与当前表现最佳的模型相比,MRR(MRR)提高了 4.7%,Hits@10(Hits@10)提高了 18.1%。此外,为了进一步验证模型的实际效用,我们检查了不在训练数据集中的 MRNDR 推荐的结果。其中一些建议已经在临床试验中进行了,这可以从它们在中国临床试验中心和 ClinicalTrials.gov 上的存在得到证明,间接证实了 MRNDR 的适用性。MRNDR 模型可以预测候选药物的可重复使用性,减少了对人工专家评估的需求,并实现了高效的药物再利用。