Suppr超能文献

基于大规模质谱数据的蛋白激酶底物序列偏好基序资源数据库。

A resource database for protein kinase substrate sequence-preference motifs based on large-scale mass spectrometry data.

作者信息

Poll Brian G, Leo Kirby T, Deshpande Venky, Jayatissa Nipun, Pisitkun Trairak, Park Euijung, Yang Chin-Rang, Raghuram Viswanathan, Knepper Mark A

机构信息

Epithelial Systems Biology Laboratory, Systems Biology Center, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, 10 Center Drive, National Institutes of Health, Bethesda, MD, 20892-1603, USA.

Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.

出版信息

Cell Commun Signal. 2024 Feb 19;22(1):137. doi: 10.1186/s12964-023-01436-2.

Abstract

BACKGROUND

Protein phosphorylation is one of the most prevalent posttranslational modifications involved in molecular control of cellular processes, and is mediated by over 520 protein kinases in humans and other mammals. Identification of the protein kinases responsible for phosphorylation events is key to understanding signaling pathways. Unbiased phosphoproteomics experiments have generated a wealth of data that can be used to identify protein kinase targets and their preferred substrate sequences.

METHODS

This study utilized prior data from mass spectrometry-based studies identifying sites of protein phosphorylation after in vitro incubation of protein mixtures with recombinant protein kinases. PTM-Logo software was used with these data to generate position-dependent Shannon information matrices and sequence motif 'logos'. Webpages were constructed for facile access to logos for each kinase and a new stand-alone application was written in Python that uses the position-dependent Shannon information matrices to identify kinases most likely to phosphorylate a particular phosphorylation site.

RESULTS

A database of kinase substrate target preference logos allows browsing, searching, or downloading target motif data for each protein kinase ( https://esbl.nhlbi.nih.gov/Databases/Kinase_Logos/ ). These logos were combined with phylogenetic analysis of protein kinase catalytic sequences to reveal substrate preference patterns specific to particular groups of kinases ( https://esbl.nhlbi.nih.gov/Databases/Kinase_Logos/KinaseTree.html ). A stand-alone program, KinasePredictor, is provided ( https://esbl.nhlbi.nih.gov/Databases/Kinase_Logos/KinasePredictor.html ). It takes as input, amino-acid sequences surrounding a given phosphorylation site and generates a ranked list of protein kinases most likely to phosphorylate that site.

CONCLUSIONS

This study provides three new resources for protein kinase characterization. It provides a tool for prediction of kinase-substrate interactions, which in combination with other types of data (co-localization, etc.), can predict which kinases are likely responsible for a given phosphorylation event in a given tissue. Video Abstract.

摘要

背景

蛋白质磷酸化是参与细胞过程分子调控的最普遍的翻译后修饰之一,由人类和其他哺乳动物中的520多种蛋白激酶介导。鉴定负责磷酸化事件的蛋白激酶是理解信号通路的关键。无偏磷酸蛋白质组学实验产生了大量数据,可用于鉴定蛋白激酶靶点及其偏好的底物序列。

方法

本研究利用基于质谱研究的先前数据,这些数据是在蛋白质混合物与重组蛋白激酶体外孵育后鉴定蛋白质磷酸化位点的。PTM-Logo软件用于这些数据以生成位置依赖的香农信息矩阵和序列基序“标识”。构建了网页以便于访问每种激酶的标识,并编写了一个新的独立Python应用程序,该程序使用位置依赖的香农信息矩阵来鉴定最有可能磷酸化特定磷酸化位点的激酶。

结果

激酶底物靶点偏好标识数据库允许浏览、搜索或下载每种蛋白激酶的靶点基序数据(https://esbl.nhlbi.nih.gov/Databases/Kinase_Logos/)。这些标识与蛋白激酶催化序列的系统发育分析相结合,以揭示特定激酶组特有的底物偏好模式(https://esbl.nhlbi.nih.gov/Databases/Kinase_Logos/KinaseTree.html)。提供了一个独立程序KinasePredictor(https://esbl.nhlbi.nih.gov/Databases/Kinase_Logos/KinasePredictor.html)。它将给定磷酸化位点周围的氨基酸序列作为输入,并生成最有可能磷酸化该位点的蛋白激酶排名列表。

结论

本研究为蛋白激酶表征提供了三种新资源。它提供了一种预测激酶-底物相互作用的工具,该工具与其他类型的数据(共定位等)相结合,可以预测哪些激酶可能负责给定组织中的特定磷酸化事件。视频摘要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7ab/10875805/61bb2230490d/12964_2023_1436_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验