Suppr超能文献

通过石墨烯插层实现原子级薄量子自旋霍尔绝缘体中的环境稳定性。

Achieving environmental stability in an atomically thin quantum spin Hall insulator via graphene intercalation.

作者信息

Schmitt Cedric, Erhardt Jonas, Eck Philipp, Schmitt Matthias, Lee Kyungchan, Keßler Philipp, Wagner Tim, Spring Merit, Liu Bing, Enzner Stefan, Kamp Martin, Jovic Vedran, Jozwiak Chris, Bostwick Aaron, Rotenberg Eli, Kim Timur, Cacho Cephise, Lee Tien-Lin, Sangiovanni Giorgio, Moser Simon, Claessen Ralph

机构信息

Physikalisches Institut, Universität Würzburg, D-97074, Würzburg, Germany.

Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, D-97074, Würzburg, Germany.

出版信息

Nat Commun. 2024 Feb 19;15(1):1486. doi: 10.1038/s41467-024-45816-9.

Abstract

Atomic monolayers on semiconductor surfaces represent an emerging class of functional quantum materials in the two-dimensional limit - ranging from superconductors and Mott insulators to ferroelectrics and quantum spin Hall insulators. Indenene, a triangular monolayer of indium with a gap of ~ 120 meV is a quantum spin Hall insulator whose micron-scale epitaxial growth on SiC(0001) makes it technologically relevant. However, its suitability for room-temperature spintronics is challenged by the instability of its topological character in air. It is imperative to develop a strategy to protect the topological nature of indenene during ex situ processing and device fabrication. Here we show that intercalation of indenene into epitaxial graphene provides effective protection from the oxidising environment, while preserving an intact topological character. Our approach opens a rich realm of ex situ experimental opportunities, priming monolayer quantum spin Hall insulators for realistic device fabrication and access to topologically protected edge channels.

摘要

半导体表面的原子单层代表了一类新兴的二维极限功能量子材料,涵盖从超导体、莫特绝缘体到铁电体和量子自旋霍尔绝缘体等。茚烯是一种具有约120毫电子伏特能隙的铟三角形单层,是一种量子自旋霍尔绝缘体,其在碳化硅(0001)上的微米级外延生长使其具有技术相关性。然而,其在空气中拓扑特性的不稳定性对其在室温自旋电子学中的适用性提出了挑战。开发一种在非原位处理和器件制造过程中保护茚烯拓扑性质的策略势在必行。在此,我们表明将茚烯插入外延石墨烯可有效保护其免受氧化环境影响,并同时保持完整的拓扑特性。我们的方法开启了丰富的非原位实验机会领域,为实际器件制造和获取拓扑保护边缘通道的单层量子自旋霍尔绝缘体做好了准备。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f161/10876696/239e9a228aa8/41467_2024_45816_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验