Gehrig Lukas, Schmitt Cedric, Erhardt Jonas, Liu Bing, Wagner Tim, Kamp Martin, Moser Simon, Claessen Ralph
Physikalisches Institut, Universität Würzburg, D-97074, Würzburg, Germany.
Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, D-97074, Würzburg, Germany.
Adv Mater. 2025 Aug;37(33):e2502412. doi: 10.1002/adma.202502412. Epub 2025 May 20.
The quantum spin Hall insulator bismuthene, a two-third monolayer of bismuth on SiC(0001), is distinguished by helical metallic edge states that are protected by a groundbreaking 800 meV topological gap, making it ideal for room temperature applications. This massive gap inversion arises from a unique synergy between flat honeycomb structure, strong spin orbit coupling, and an orbital filtering effect that is mediated by the substrate. However, the rapid oxidation of bismuthene in air has severely hindered the development of applications, so far confining experiments to ultra-high vacuum conditions. Intercalating bismuthene between SiC and a protective sheet of graphene, this barrier is successfully overcome. As demonstrated by scanning tunneling microscopy and photoemission spectroscopy, graphene intercalation preserves the structural and topological integrity of bismuthene, while effectively shielding it from oxidation in air. Hereby, hydrogen is identified as the critical process gas that was missing in previous bismuth intercalation attempts. These findings facilitate ex-situ experiments and pave the way for the development of bismuthene based devices, signaling a significant step forward in the development of next-generation technologies.
量子自旋霍尔绝缘体铋烯,即生长在碳化硅(0001)上的三分之二单层铋,其特征在于具有螺旋形金属边缘态,该边缘态受到高达800毫电子伏特的开创性拓扑能隙保护,使其成为室温应用的理想材料。这种巨大的能隙反转源于扁平蜂窝结构、强自旋轨道耦合以及由衬底介导的轨道滤波效应之间的独特协同作用。然而,铋烯在空气中的快速氧化严重阻碍了其应用发展,迄今为止,实验只能在超高真空条件下进行。通过在碳化硅和石墨烯保护片之间插入铋烯,成功克服了这一障碍。扫描隧道显微镜和光发射光谱表明,插入石墨烯可保持铋烯的结构和拓扑完整性,同时有效保护其免受空气中的氧化。据此,氢气被确定为先前铋插入尝试中缺失的关键工艺气体。这些发现促进了非原位实验,并为基于铋烯的器件开发铺平了道路,标志着下一代技术发展向前迈出了重要一步。