Suppr超能文献

贝叶斯半参数纵向逆概率混合模型在类别学习中的应用。

Bayesian Semiparametric Longitudinal Inverse-Probit Mixed Models for Category Learning.

机构信息

Department of Mathematics and Statistics, Indian Institute of Technology, Kanpur, 208016, Uttar Pradesh, India.

Department of Communication Sciences and Disorders, Northwestern University, 70 Arts Circle Drive, Evanston, IL, 60208, USA.

出版信息

Psychometrika. 2024 Jun;89(2):461-485. doi: 10.1007/s11336-024-09947-8. Epub 2024 Feb 19.

Abstract

Understanding how the adult human brain learns novel categories is an important problem in neuroscience. Drift-diffusion models are popular in such contexts for their ability to mimic the underlying neural mechanisms. One such model for gradual longitudinal learning was recently developed in Paulon et al. (J Am Stat Assoc 116:1114-1127, 2021). In practice, category response accuracies are often the only reliable measure recorded by behavioral scientists to describe human learning. Category response accuracies are, however, often the only reliable measure recorded by behavioral scientists to describe human learning. To our knowledge, however, drift-diffusion models for such scenarios have never been considered in the literature before. To address this gap, in this article, we build carefully on Paulon et al. (J Am Stat Assoc 116:1114-1127, 2021), but now with latent response times integrated out, to derive a novel biologically interpretable class of 'inverse-probit' categorical probability models for observed categories alone. However, this new marginal model presents significant identifiability and inferential challenges not encountered originally for the joint model in Paulon et al. (J Am Stat Assoc 116:1114-1127, 2021). We address these new challenges using a novel projection-based approach with a symmetry-preserving identifiability constraint that allows us to work with conjugate priors in an unconstrained space. We adapt the model for group and individual-level inference in longitudinal settings. Building again on the model's latent variable representation, we design an efficient Markov chain Monte Carlo algorithm for posterior computation. We evaluate the empirical performance of the method through simulation experiments. The practical efficacy of the method is illustrated in applications to longitudinal tone learning studies.

摘要

理解成年人大脑如何学习新类别是神经科学中的一个重要问题。在这种情况下,漂移-扩散模型因其能够模拟潜在的神经机制而在流行。保罗等人最近开发了一种用于逐渐纵向学习的此类模型。在实践中,类别响应准确率通常是行为科学家唯一可靠的测量方法,用于描述人类学习。然而,类别响应准确率通常是行为科学家唯一可靠的测量方法,用于描述人类学习。然而,据我们所知,在此类情况下,漂移-扩散模型在文献中从未被考虑过。为了解决这一差距,在本文中,我们在保罗等人的工作基础上进行了仔细的研究。(J Am Stat Assoc 116:1114-1127, 2021),但现在已经将潜在的反应时间整合在一起,为仅观察到的类别推导出一种新的具有生物学解释的“逆概率”类别概率模型。然而,这个新的边缘模型提出了重大的可识别性和推理挑战,这些挑战在保罗等人最初的联合模型中没有遇到。(J Am Stat Assoc 116:1114-1127, 2021)。我们使用一种新的基于投影的方法来解决这些新的挑战,该方法具有保持对称性的可识别性约束,允许我们在不受约束的空间中使用共轭先验。我们将该模型适应于纵向设置中的组和个体水平推理。再次基于模型的潜在变量表示,我们设计了一种用于后验计算的高效马尔可夫链蒙特卡罗算法。我们通过模拟实验评估了该方法的经验性能。该方法的实际效果通过纵向音调学习研究的应用得到了说明。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验