文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用深度卷积神经网络从复杂的乳腺 X 线图像中进行高效的乳腺癌诊断。

Efficient Breast Cancer Diagnosis from Complex Mammographic Images Using Deep Convolutional Neural Network.

机构信息

Department of Computer Games Development, Faculty of Computing and AI, Air University, E9, Islamabad, Pakistan.

Department of Computer Science, Faculty of Computing and AI, Air University, E9, Islamabad, Pakistan.

出版信息

Comput Intell Neurosci. 2023 Mar 2;2023:7717712. doi: 10.1155/2023/7717712. eCollection 2023.


DOI:10.1155/2023/7717712
PMID:36909966
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9998154/
Abstract

Medical image analysis places a significant focus on breast cancer, which poses a significant threat to women's health and contributes to many fatalities. An early and precise diagnosis of breast cancer through digital mammograms can significantly improve the accuracy of disease detection. Computer-aided diagnosis (CAD) systems must analyze the medical imagery and perform detection, segmentation, and classification processes to assist radiologists with accurately detecting breast lesions. However, early-stage mammography cancer detection is certainly difficult. The deep convolutional neural network has demonstrated exceptional results and is considered a highly effective tool in the field. This study proposes a computational framework for diagnosing breast cancer using a ResNet-50 convolutional neural network to classify mammogram images. To train and classify the INbreast dataset into benign or malignant categories, the framework utilizes transfer learning from the pretrained ResNet-50 CNN on ImageNet. The results revealed that the proposed framework achieved an outstanding classification accuracy of 93%, surpassing other models trained on the same dataset. This novel approach facilitates early diagnosis and classification of malignant and benign breast cancer, potentially saving lives and resources. These outcomes highlight that deep convolutional neural network algorithms can be trained to achieve highly accurate results in various mammograms, along with the capacity to enhance medical tools by reducing the error rate in screening mammograms.

摘要

医学图像分析专注于乳腺癌,它严重威胁着女性健康,导致许多人死亡。通过数字乳腺 X 光摄影术早期、准确地诊断乳腺癌,可以显著提高疾病检测的准确性。计算机辅助诊断 (CAD) 系统必须分析医学图像并执行检测、分割和分类过程,以帮助放射科医生准确地检测乳腺病变。然而,早期乳腺癌检测确实具有一定难度。深度卷积神经网络已经取得了卓越的成果,被认为是该领域非常有效的工具。本研究提出了一种使用 ResNet-50 卷积神经网络诊断乳腺癌的计算框架,以对乳腺 X 光图像进行分类。该框架利用在 ImageNet 上预训练的 ResNet-50 CNN 进行迁移学习,对 INbreast 数据集进行训练和分类,将其分为良性或恶性类别。结果表明,所提出的框架实现了 93%的出色分类准确率,超过了在同一数据集上训练的其他模型。这种新方法有助于早期诊断和分类恶性和良性乳腺癌,可能挽救生命和资源。这些结果表明,深度卷积神经网络算法可以经过训练,在各种乳腺 X 光片中取得高度准确的结果,并通过降低筛查乳腺 X 光片中的错误率来增强医疗工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d83b/9998154/5057e5f0f740/CIN2023-7717712.006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d83b/9998154/0fcbecc23471/CIN2023-7717712.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d83b/9998154/611124f0be7a/CIN2023-7717712.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d83b/9998154/5b8ca9a16566/CIN2023-7717712.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d83b/9998154/eb2e08d1a7c2/CIN2023-7717712.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d83b/9998154/18301f594b19/CIN2023-7717712.005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d83b/9998154/5057e5f0f740/CIN2023-7717712.006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d83b/9998154/0fcbecc23471/CIN2023-7717712.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d83b/9998154/611124f0be7a/CIN2023-7717712.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d83b/9998154/5b8ca9a16566/CIN2023-7717712.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d83b/9998154/eb2e08d1a7c2/CIN2023-7717712.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d83b/9998154/18301f594b19/CIN2023-7717712.005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d83b/9998154/5057e5f0f740/CIN2023-7717712.006.jpg

相似文献

[1]
Efficient Breast Cancer Diagnosis from Complex Mammographic Images Using Deep Convolutional Neural Network.

Comput Intell Neurosci. 2023

[2]
Deep Learning Computer-Aided Diagnosis for Breast Lesion in Digital Mammogram.

Adv Exp Med Biol. 2020

[3]
A fully integrated computer-aided diagnosis system for digital X-ray mammograms via deep learning detection, segmentation, and classification.

Int J Med Inform. 2018-6-18

[4]
Deep Convolutional Neural Networks for breast cancer screening.

Comput Methods Programs Biomed. 2018-1-11

[5]
Classification of Mammogram Images Using Multiscale all Convolutional Neural Network (MA-CNN).

J Med Syst. 2019-12-14

[6]
A deep learning method for classifying mammographic breast density categories.

Med Phys. 2018-1

[7]
YOLO Based Breast Masses Detection and Classification in Full-Field Digital Mammograms.

Comput Methods Programs Biomed. 2021-3

[8]
Simultaneous detection and classification of breast masses in digital mammograms via a deep learning YOLO-based CAD system.

Comput Methods Programs Biomed. 2018-1-31

[9]
Detection of masses in mammograms using a one-stage object detector based on a deep convolutional neural network.

PLoS One. 2018-9-18

[10]
Mammogram classification based on a novel convolutional neural network with efficient channel attention.

Comput Biol Med. 2022-11

引用本文的文献

[1]
Employing transfer learning for breast cancer detection using deep learning models.

PLOS Digit Health. 2025-6-16

[2]
MM-3D Unet: development of a lightweight breast cancer tumor segmentation network utilizing multi-task and depthwise separable convolution.

Front Oncol. 2025-5-13

[3]
AI's ongoing impact: Implications of AI's effects on health equity for women's healthcare providers.

Rev Panam Salud Publica. 2025-4-9

[4]
Breast cancer classification based on hybrid CNN with LSTM model.

Sci Rep. 2025-2-5

[5]
A Systematic Review of Real-Time Deep Learning Methods for Image-Based Cancer Diagnostics.

J Multidiscip Healthc. 2024-9-9

[6]
Deep learning empowered breast cancer diagnosis: Advancements in detection and classification.

PLoS One. 2024

[7]
A Review of Artificial Intelligence in Breast Imaging.

Tomography. 2024-5-9

[8]
Computer-aided analysis of radiological images for cancer diagnosis: performance analysis on benchmark datasets, challenges, and directions.

EJNMMI Rep. 2024-4-1

[9]
A novel fusion framework of deep bottleneck residual convolutional neural network for breast cancer classification from mammogram images.

Front Oncol. 2024-2-22

[10]
A Systematic Literature Review of 3D Deep Learning Techniques in Computed Tomography Reconstruction.

Tomography. 2023-12-5

本文引用的文献

[1]
COVID-19 health data analysis and personal data preserving: A homomorphic privacy enforcement approach.

Comput Commun. 2023-2-1

[2]
Metastatic Choriocarcinoma of the Breast: A Rare Entity.

Cureus. 2022-2-20

[3]
Breast Cancer Classification from Ultrasound Images Using Probability-Based Optimal Deep Learning Feature Fusion.

Sensors (Basel). 2022-1-21

[4]
Breast Tumour Classification Using Ultrasound Elastography with Machine Learning: A Systematic Scoping Review.

Cancers (Basel). 2022-1-12

[5]
The association between physical health-related quality of life, physical functioning, and risk of contralateral breast cancer among older women.

Breast Cancer. 2022-3

[6]
A digital score of tumour-associated stroma infiltrating lymphocytes predicts survival in head and neck squamous cell carcinoma.

J Pathol. 2022-2

[7]
Dilated Semantic Segmentation for Breast Ultrasonic Lesion Detection Using Parallel Feature Fusion.

Diagnostics (Basel). 2021-7-5

[8]
Atezolizumab-induced encephalitis in a patient with metastatic breast cancer: a case report and review of neurological adverse events associated with checkpoint inhibitors.

Autops Case Rep. 2021-4-15

[9]
Convolutional Neural Networks based classification of breast ultrasonography images by hybrid method with respect to benign, malignant, and normal using mRMR.

Comput Biol Med. 2021-6

[10]
Deep convolutional neural network and emotional learning based breast cancer detection using digital mammography.

Comput Biol Med. 2021-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索