Electrical and Computer Engineering, The University of British Columbia, Canada.
Australian Centre for Visual Technologies, The University of British Columbia, Australia.
Med Image Anal. 2017 Apr;37:114-128. doi: 10.1016/j.media.2017.01.009. Epub 2017 Jan 28.
We present an integrated methodology for detecting, segmenting and classifying breast masses from mammograms with minimal user intervention. This is a long standing problem due to low signal-to-noise ratio in the visualisation of breast masses, combined with their large variability in terms of shape, size, appearance and location. We break the problem down into three stages: mass detection, mass segmentation, and mass classification. For the detection, we propose a cascade of deep learning methods to select hypotheses that are refined based on Bayesian optimisation. For the segmentation, we propose the use of deep structured output learning that is subsequently refined by a level set method. Finally, for the classification, we propose the use of a deep learning classifier, which is pre-trained with a regression to hand-crafted feature values and fine-tuned based on the annotations of the breast mass classification dataset. We test our proposed system on the publicly available INbreast dataset and compare the results with the current state-of-the-art methodologies. This evaluation shows that our system detects 90% of masses at 1 false positive per image, has a segmentation accuracy of around 0.85 (Dice index) on the correctly detected masses, and overall classifies masses as malignant or benign with sensitivity (Se) of 0.98 and specificity (Sp) of 0.7.
我们提出了一种综合方法,用于在最小用户干预的情况下从乳房 X 光片中检测、分割和分类乳腺肿块。由于乳腺肿块的可视化中存在低信噪比,并且其在形状、大小、外观和位置方面存在很大的可变性,因此这是一个长期存在的问题。我们将问题分解为三个阶段:肿块检测、肿块分割和肿块分类。对于检测,我们提出了一个深度学习方法的级联,以选择基于贝叶斯优化进行细化的假设。对于分割,我们提出使用深度结构输出学习,随后由水平集方法进行细化。最后,对于分类,我们提出使用深度学习分类器,该分类器使用回归预先训练到手工艺特征值,并根据乳腺肿块分类数据集的注释进行微调。我们在公开可用的 INbreast 数据集上测试了我们提出的系统,并将结果与当前最先进的方法进行了比较。该评估表明,我们的系统在每张图像 1 个假阳性的情况下可以检测到 90%的肿块,在正确检测到的肿块上的分割精度约为 0.85(Dice 指数),并且总体上可以将肿块分类为恶性或良性,灵敏度(Se)为 0.98,特异性(Sp)为 0.7。