Suppr超能文献

基于高维时间序列的多个图形模型联合估计

Joint Estimation of Multiple Graphical Models from High Dimensional Time Series.

作者信息

Qiu Huitong, Han Fang, Liu Han, Caffo Brian

机构信息

Johns Hopkins University, Baltimore, USA.

Princeton University, Princeton, USA.

出版信息

J R Stat Soc Series B Stat Methodol. 2016 Mar 1;78(2):487-504. doi: 10.1111/rssb.12123. Epub 2015 Jul 6.

Abstract

In this manuscript we consider the problem of jointly estimating multiple graphical models in high dimensions. We assume that the data are collected from subjects, each of which consists of possibly dependent observations. The graphical models of subjects vary, but are assumed to change smoothly corresponding to a measure of closeness between subjects. We propose a kernel based method for jointly estimating all graphical models. Theoretically, under a double asymptotic framework, where both (, ) and the dimension can increase, we provide the explicit rate of convergence in parameter estimation. It characterizes the strength one can borrow across different individuals and the impact of data dependence on parameter estimation. Empirically, experiments on both synthetic and real resting state functional magnetic resonance imaging (rs-fMRI) data illustrate the effectiveness of the proposed method.

摘要

在本手稿中,我们考虑高维情况下联合估计多个图形模型的问题。我们假设数据是从多个主体收集的,每个主体由可能相关的观测值组成。各主体的图形模型各不相同,但假定会根据主体之间的接近程度度量而平滑变化。我们提出一种基于核的方法来联合估计所有图形模型。从理论上讲,在一个双渐近框架下,其中(,)和维度都可以增加,我们给出了参数估计中的明确收敛速率。它刻画了可以在不同个体间借用的强度以及数据相关性对参数估计的影响。从实证角度看,对合成数据和真实静息态功能磁共振成像(rs - fMRI)数据的实验都说明了所提方法的有效性。

相似文献

1
Joint Estimation of Multiple Graphical Models from High Dimensional Time Series.基于高维时间序列的多个图形模型联合估计
J R Stat Soc Series B Stat Methodol. 2016 Mar 1;78(2):487-504. doi: 10.1111/rssb.12123. Epub 2015 Jul 6.
2
Joint Learning of Multiple Sparse Matrix Gaussian Graphical Models.联合学习多个稀疏矩阵高斯图模型。
IEEE Trans Neural Netw Learn Syst. 2015 Nov;26(11):2606-20. doi: 10.1109/TNNLS.2014.2384201. Epub 2015 Mar 4.
3
Joint estimation of multiple graphical models.多个图形模型的联合估计
Biometrika. 2011 Mar;98(1):1-15. doi: 10.1093/biomet/asq060. Epub 2011 Feb 9.
10
Graph Estimation with Joint Additive Models.基于联合加法模型的图估计
Biometrika. 2014 Mar 1;101(1):85-101. doi: 10.1093/biomet/ast053.

引用本文的文献

7
Conditional Functional Graphical Models.条件功能图形模型
J Am Stat Assoc. 2023;118(541):257-271. doi: 10.1080/01621459.2021.1924178. Epub 2021 Jun 22.

本文引用的文献

1
Spatial Modeling With Spatially Varying Coefficient Processes.具有空间变化系数过程的空间建模
J Am Stat Assoc. 2003;98(462):387-396. doi: 10.1198/016214503000170. Epub 2011 Dec 31.
7
Joint estimation of multiple graphical models.多个图形模型的联合估计
Biometrika. 2011 Mar;98(1):1-15. doi: 10.1093/biomet/asq060. Epub 2011 Feb 9.
9
Functional and effective connectivity: a review.功能连接和有效连接:综述。
Brain Connect. 2011;1(1):13-36. doi: 10.1089/brain.2011.0008.
10
Imaging brain development: the adolescent brain.脑发育影像学研究:青少年脑。
Neuroimage. 2012 Jun;61(2):397-406. doi: 10.1016/j.neuroimage.2011.11.080. Epub 2011 Dec 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验