Tang Jinglin, Li Yaolong, Ye Sheng, Jiang Pengzuo, Xue Zhaohang, Li Xiaofang, Lyu Xiaying, Liu Qinyun, Chu Saisai, Yang Hong, Wu Chengyin, Hu Xiaoyong, Gao Yunan, Wang Shufeng, Sun Quan, Lu Guowei, Gong Qihuang
State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter and Frontiers Science Center for Nano-optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing 100871, China.
Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China.
Nano Lett. 2024 Mar 6;24(9):2931-2938. doi: 10.1021/acs.nanolett.4c00324. Epub 2024 Feb 20.
Plasmon-induced hot-electron transfer at the metallic nanoparticle/semiconductor interface is the basis of plasmon-enhanced photocatalysis and energy harvesting. However, limited by the nanoscale size of hot spots and femtosecond time scale of hot-electron transfer, direct observation is still challenging. Herein, by using spatiotemporal-resolved photoemission electron microscopy with a two-color pump-probe beamline, we directly observed such a process with a concise system, the Au nanoparticle/monolayer transition-metal dichalcogenide (TMD) interface. The ultrafast hot-electron transfer from Au nanoparticles to monolayer TMDs and the plasmon-enhanced transfer process were directly measured and verified through an in situ comparison with the Au film/TMD interface and free TMDs. The lifetime at the Au nanoparticle/MoSe interface decreased from 410 to 42 fs, while the photoemission intensities exhibited a 27-fold increase compared to free MoSe. We also measured the evolution of hot electrons in the energy distributions, indicating the hot-electron injection and decay happened in an ultrafast time scale of ∼50 fs without observable electron cooling.
金属纳米颗粒/半导体界面处的等离子体激元诱导热电子转移是等离子体激元增强光催化和能量收集的基础。然而,受热点纳米尺度大小和热电子转移飞秒时间尺度的限制,直接观测仍然具有挑战性。在此,通过使用具有双色泵浦-探测光束线的时空分辨光发射电子显微镜,我们利用简洁的系统——金纳米颗粒/单层过渡金属二硫属化物(TMD)界面,直接观测到了这一过程。通过与金膜/TMD界面和自由TMD进行原位比较,直接测量并验证了从金纳米颗粒到单层TMD的超快热电子转移以及等离子体激元增强的转移过程。金纳米颗粒/MoSe界面处的寿命从410 fs降至42 fs,而光发射强度与自由MoSe相比增加了27倍。我们还测量了热电子能量分布的演变,表明热电子注入和衰减发生在约50 fs的超快时间尺度内,且未观察到电子冷却现象。