Xu Ce, Yong Hui Wen, He Jinlu, Long Run, Cadore Alisson R, Paradisanos Ioannis, Ott Anna K, Soavi Giancarlo, Tongay Sefaattin, Cerullo Giulio, Ferrari Andrea C, Prezhdo Oleg V, Loh Zhi-Heng
Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore.
College of Chemistry, Key Laboratory of Theoretical and Computational Photochemistry, Beijing Normal University, Beijing 100875, People's Republic of China.
ACS Nano. 2021 Jan 26;15(1):819-828. doi: 10.1021/acsnano.0c07350. Epub 2020 Dec 21.
Electron transport across the transition-metal dichalcogenide (TMD)/metal interface plays an important role in determining the performance of TMD-based optoelectronic devices. However, the robustness of this process against structural heterogeneities remains unexplored, to the best of our knowledge. Here, we employ a combination of time-resolved photoemission electron microscopy (TR-PEEM) and atomic force microscopy to investigate the spatially resolved hot-electron-transfer dynamics at the monolayer (1L) MoS/Au interface. A spatially heterogeneous distribution of 1L-MoS/Au gap distances, along with the sub-80 nm spatial- and sub-60 fs temporal resolution of TR-PEEM, permits the simultaneous measurement of electron-transfer rates across a range of 1L-MoS/Au distances. These decay exponentially as a function of distance, with an attenuation coefficient β ∼ 0.06 ± 0.01 Å, comparable to molecular wires. simulations suggest that surface plasmon-like states mediate hot-electron-transfer, hence accounting for its weak distance dependence. The weak distance dependence of the interfacial hot-electron-transfer rate indicates that this process is insensitive to distance fluctuations at the TMD/metal interface, thus motivating further exploration of optoelectronic devices based on hot carriers.
电子在过渡金属二硫属化物(TMD)/金属界面的传输,对于决定基于TMD的光电器件性能起着重要作用。然而,据我们所知,这一过程对于结构异质性的稳健性仍未得到探索。在此,我们采用时间分辨光发射电子显微镜(TR-PEEM)和原子力显微镜相结合的方法,来研究单层(1L)MoS/Au界面上空间分辨的热电子转移动力学。1L-MoS/Au间隙距离的空间非均匀分布,以及TR-PEEM的亚80 nm空间分辨率和亚60 fs时间分辨率,使得能够同时测量一系列1L-MoS/Au距离上的电子转移速率。这些速率随距离呈指数衰减,衰减系数β约为0.06±0.01 Å,与分子导线相当。模拟表明,类表面等离子体激元态介导热电子转移,因此解释了其对距离的微弱依赖性。界面热电子转移速率对距离的微弱依赖性表明,该过程对TMD/金属界面处的距离波动不敏感,从而推动了基于热载流子的光电器件的进一步探索。