Suppr超能文献

利用细菌叶绿素作为光敏剂对微生物进行光灭活。

Photoinactivation of microorganisms using bacteriochlorins as photosensitizers.

机构信息

Universidade Federal da Integração Latino-Americana, Caixa Postal 2044, Foz Do Iguaçu, PR, CEP 85866-000, Brazil.

Universidade Federal de São Carlos, Rodovia Washington Luís, Km 235 - SP-310, São Carlos, SP, 13565-905, Brazil.

出版信息

Braz J Microbiol. 2024 Jun;55(2):1139-1150. doi: 10.1007/s42770-024-01278-1. Epub 2024 Feb 20.

Abstract

In recent years, some microorganisms have shown resistance to conventional treatments. Considering this increase in resistant pathogens, treatment alternatives are needed to promote greater treatment efficiency. In this sense, antimicrobial photodynamic therapy (aPDT) has been an alternative treatment. This technique uses a photosensitizer that is activated by light with a specific wavelength producing reactive species, leading to the death of pathogenic microorganisms. In this study, bacteriochlorophyll derivatives such as bacteriochlorin metoxi (Bchl-M) and bacteriochlorin trizma (Bchl-T) obtained from purple bacterium (Rhodopseudomonas faecalis), were evaluated as photosensitizers in the aPDT. Photodynamic inactivation (PDI) of the microorganisms Staphylococcus aureus, Micrococcus luteus, Candida albicans and Pseudomonas aeruginosa was investigated with both bacteriochlorins (Bchl-M and Bchl-T) at different concentrations (1, 15 and 30 µM for S. aureus; 1, 15, 30, 45, 60 and 75 µM for M. luteus; 30, 60, 90, 105, 120 and 150 µM for C. albicans; and 200 µM for P. aeruginosa) and different doses of light (20 and 30 J/cm for S. aureus and M. luteus; 30 and 45 J/cm for C. albicans; and 45 J/cm for P. aeruginosa) to inactivate them. Both photosensitizers showed good activation against S. aureus and for M. luteus, we observed the inactivation of these microorganisms at approximately 3 log, showing to be a good photosensitizers for these microorganisms.

摘要

近年来,一些微生物对常规治疗表现出耐药性。考虑到耐药病原体的增加,需要寻找替代治疗方法以提高治疗效率。在这种情况下,抗菌光动力疗法(aPDT)已成为一种替代治疗方法。该技术使用一种光敏剂,该光敏剂在特定波长的光下被激活,产生反应性物质,从而导致致病微生物死亡。在这项研究中,从紫色细菌(Rhodopseudomonas faecalis)中获得的细菌叶绿素衍生物,如细菌叶绿素甲氧基(Bchl-M)和细菌叶绿素三甲酯(Bchl-T),被评估为 aPDT 的光敏剂。用两种细菌叶绿素(Bchl-M 和 Bchl-T)在不同浓度(金黄色葡萄球菌为 1、15 和 30 μM;微球菌为 1、15、30、45、60 和 75 μM;白色念珠菌为 30、60、90、105、120 和 150 μM;铜绿假单胞菌为 200 μM)和不同剂量的光(金黄色葡萄球菌和微球菌为 20 和 30 J/cm;白色念珠菌为 30 和 45 J/cm;铜绿假单胞菌为 45 J/cm)对金黄色葡萄球菌、微球菌、白色念珠菌和铜绿假单胞菌进行光动力失活(PDI)研究。两种光敏剂对金黄色葡萄球菌和微球菌都表现出良好的激活作用,我们观察到这些微生物的失活约为 3 个对数级,表明它们是这些微生物的良好光敏剂。

相似文献

1
Photoinactivation of microorganisms using bacteriochlorins as photosensitizers.
Braz J Microbiol. 2024 Jun;55(2):1139-1150. doi: 10.1007/s42770-024-01278-1. Epub 2024 Feb 20.
3
Photodynamic activity of water-soluble phthalocyanine zinc(II) complexes against pathogenic microorganisms.
Bioorg Med Chem. 2007 Jul 15;15(14):4829-35. doi: 10.1016/j.bmc.2007.04.069. Epub 2007 May 6.
4
Stable synthetic cationic bacteriochlorins as selective antimicrobial photosensitizers.
Antimicrob Agents Chemother. 2010 Sep;54(9):3834-41. doi: 10.1128/AAC.00125-10. Epub 2010 Jul 12.
5
Effect of albumin on the photodynamic inactivation of microorganisms by a cationic porphyrin.
J Photochem Photobiol B. 2005 Apr 4;79(1):51-7. doi: 10.1016/j.jphotobiol.2004.11.020. Epub 2005 Jan 19.
10
Photodynamic antimicrobial activity of new porphyrin derivatives against methicillin resistant Staphylococcus aureus.
J Microbiol. 2018 Nov;56(11):828-837. doi: 10.1007/s12275-018-8244-7. Epub 2018 Oct 24.

引用本文的文献

2
Antimicrobial Photodynamic Therapy: Self-Disinfecting Surfaces for Controlling Microbial Infections.
Microorganisms. 2024 Aug 1;12(8):1573. doi: 10.3390/microorganisms12081573.

本文引用的文献

1
New methylene blue-mediated photodynamic inactivation of multidrug-resistant Fonsecaea nubica infected chromoblastomycosis in vitro.
Braz J Microbiol. 2023 Jun;54(2):873-883. doi: 10.1007/s42770-023-00974-8. Epub 2023 May 5.
3
Investigation on the in vitro anti-Trichophyton activity of photosensitizers.
Photochem Photobiol Sci. 2022 Jul;21(7):1185-1192. doi: 10.1007/s43630-022-00205-3. Epub 2022 Mar 24.
4
Enhanced antimicrobial activity through the combination of antimicrobial photodynamic therapy and low-frequency ultrasonic irradiation.
Adv Drug Deliv Rev. 2022 Apr;183:114168. doi: 10.1016/j.addr.2022.114168. Epub 2022 Feb 18.
6
Microbial biofilm: formation, architecture, antibiotic resistance, and control strategies.
Braz J Microbiol. 2021 Dec;52(4):1701-1718. doi: 10.1007/s42770-021-00624-x. Epub 2021 Sep 23.
7
Photodynamic therapy with a new bacteriochlorin derivative: Characterization and in vitro studies.
Photodiagnosis Photodyn Ther. 2021 Jun;34:102251. doi: 10.1016/j.pdpdt.2021.102251. Epub 2021 Mar 8.
9
Antiviral photodynamic therapy: Inactivation and inhibition of SARS-CoV-2 in vitro using methylene blue and Radachlorin.
Photodiagnosis Photodyn Ther. 2021 Mar;33:102112. doi: 10.1016/j.pdpdt.2020.102112. Epub 2020 Nov 26.
10
Novel Type of Water-Soluble Photosensitizer from for Photodynamic Inactivation of Gram-Positive Bacteria.
Langmuir. 2020 Nov 10;36(44):13227-13235. doi: 10.1021/acs.langmuir.0c02109. Epub 2020 Oct 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验