Suppr超能文献

建立预测急性坏死性胰腺炎风险的列线图。

Development of a Nomogram to Predict the Risk for Acute Necrotizing Pancreatitis.

机构信息

Department of Gastroenterology, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, China.

出版信息

Gut Liver. 2024 Sep 15;18(5):915-923. doi: 10.5009/gnl230403. Epub 2024 Feb 22.

Abstract

BACKGROUND/AIMS: Necrotizing pancreatitis (NP) presents a more severe clinical trajectory and increased mortality compared to edematous pancreatitis. Prompt identification of NP is vital for patient prognosis. A risk prediction model for NP among Chinese patients has been developed and validated to aid in early detection.

METHODS

A retrospective analysis was performed on 218 patients with acute pancreatitis (AP) to examine the association of various clinical variables with NP. The least absolute shrinkage and selection operator (LASSO) regression was utilized to refine variables and select predictors. Subsequently, a multivariate logistic regression was employed to construct a predictive nomogram. The model's accuracy was validated using bootstrap resampling (n=500) and its calibration assessed via a calibration curve. The model's clinical utility was evaluated through decision curve analysis.

RESULTS

Of the 28 potential predictors analyzed in 218 AP patients, the incidence of NP was 25.2%. LASSO regression identified 14 variables, with procalcitonin, triglyceride, white blood cell count at 48 hours post-admission, calcium at 48 hours post-admission, and hematocrit at 48 hours post-admission emerging as independent risk factors for NP. The resulting nomogram accurately predicted NP risk with an area under the curve of 0.822, sensitivity of 82.8%, and specificity of 76.4%. The bootstrap-validated area under the curve remained at 0.822 (95% confidence interval, 0.737 to 0.892). This model exhibited excellent calibration and demonstrated greater predictive efficacy and clinical utility for NP than APACHE II, Ranson, and BISAP.

CONCLUSIONS

We have developed a prediction nomogram of NP that is of great value in guiding clinical decision.

摘要

背景/目的:与水肿性胰腺炎相比,坏死性胰腺炎(NP)表现出更严重的临床病程和更高的死亡率。NP 的及时识别对患者的预后至关重要。目前已经开发并验证了一种针对中国患者 NP 的风险预测模型,以帮助早期发现。

方法

对 218 例急性胰腺炎(AP)患者进行回顾性分析,研究各种临床变量与 NP 的关系。采用最小绝对收缩和选择算子(LASSO)回归法对变量进行精炼,并选择预测因子。然后,采用多元逻辑回归构建预测列线图。通过 Bootstrap 重采样(n=500)验证模型的准确性,并通过校准曲线评估其校准度。通过决策曲线分析评估模型的临床实用性。

结果

在 218 例 AP 患者中分析的 28 个潜在预测因子中,NP 的发生率为 25.2%。LASSO 回归确定了 14 个变量,入院后 48 小时降钙素、甘油三酯、白细胞计数、入院后 48 小时血钙和入院后 48 小时红细胞压积是 NP 的独立危险因素。由此产生的列线图准确预测 NP 风险,曲线下面积为 0.822,灵敏度为 82.8%,特异性为 76.4%。Bootstrap 验证的曲线下面积仍为 0.822(95%置信区间,0.737 至 0.892)。该模型具有出色的校准度,并且在预测 NP 方面比 APACHE II、Ranson 和 BISAP 具有更高的预测效能和临床实用性。

结论

我们开发了一种预测 NP 的列线图,对指导临床决策具有重要价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f6c/11391142/9126ae56e2a7/gnl-18-5-915-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验