文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Insights into the physico-chemical and biological characterization of sodium lignosulfonate - silver nanosystems designed for wound management.

作者信息

Marinas Ioana C, Ignat Leonard, Maurușa Ignat E, Gaboreanu Madalina D, Adina Coroabă, Popa Marcela, Chifiriuc Mariana C, Angheloiu Marian, Georgescu Mihaela, Iacobescu Alexandra, Pircalabioru Gratiela Gradisteanu, Stan Miruna, Pinteala Mariana

机构信息

Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050095, Bucharest, Romania.

Research and Development Department of SC Sanimed International Impex SRL, 6 Bucharest -Giurgiu Street, 087040, Giurgiu, Romania.

出版信息

Heliyon. 2024 Feb 9;10(4):e26047. doi: 10.1016/j.heliyon.2024.e26047. eCollection 2024 Feb 29.


DOI:10.1016/j.heliyon.2024.e26047
PMID:38384565
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10878957/
Abstract

Chronic wounds represent one of the complications that might occur from the disruption of wound healing process. Recently, there has been a rise in interest in employing nanotechnology to develop novel strategies for accelerating wound healing. The aim of the present study was to use a green synthesis method to obtain AgNPs/NaLS systems useful for wounds management and perform an in-depth investigation of their behavior during and post-synthesis as well as of their biological properties. The colloids obtained from silver nanoparticles (AgNPs) and commercial sodium lignosulfonate (NaLS) in a single-pot aqueous procedure have been fully characterized by UV-Vis, FT-IR, DLS, TEM, XRD, and XPS to evaluate the synthesis efficiency and to provide new insights in the process of AgNPs formation and NaLS behavior in aqueous solutions. The effects of various concentrations of NaLS (0-16 mg/mL) and AgNO (0-20 mM) and of two different temperatures on AgNPs formation have been analyzed. Although the room temperature is feasible for AgNPs synthesis, the short mixing at 70 °C significantly increases the speed of nanoparticle formation and storage stability. In all experimental conditions AgNPs of 20-40 nm in size have been obtained. The antimicrobial activity assessed quantitatively on clinical and reference bacterial strains, both in suspension and biofilm growth state, revealed a broad antimicrobial spectrum, the most intensive inhibitory effect being noticed against and strains. The AgNP/NaLS enhanced the NO extracellular release, potentially contributing to the microbicidal and anti-adherence activity by protein oxidation. Both AgNP/NaLS and NaLS were non-hemolytic (hemolytic index<5%, 2.26 ± 0.13% hemolysis) and biocompatible (102.17 ± 3.43 % HaCaT cells viability). The presence of AgNPs increased the antioxidative activity and induced a significant cytotoxicity on non-melanoma skin cancer cells (62.86 ± 8.27% Cal-27 cells viability). Taken together, all these features suggest the multivalent potential of these colloids for the development of novel strategies for wound management, acting by preventing infection-associated complications and supporting the tissue regeneration.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf90/10878957/0e1e4a6580ff/gr17.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf90/10878957/0d20c7b076f6/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf90/10878957/445e9d5d5040/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf90/10878957/ac5110a2039d/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf90/10878957/682949edd745/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf90/10878957/15fffd426069/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf90/10878957/27164f0eb87c/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf90/10878957/b528ba0c31e7/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf90/10878957/6270f62c89f7/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf90/10878957/02025d8c2f00/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf90/10878957/e56fca7a03e3/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf90/10878957/8a3b57bc6cf5/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf90/10878957/30b02fc6bd38/gr11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf90/10878957/a89a0998a5f5/gr12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf90/10878957/51df3cd3a575/gr13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf90/10878957/1687f9b868a8/gr14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf90/10878957/1197d3df04c4/gr15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf90/10878957/a77580073eb8/gr16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf90/10878957/0e1e4a6580ff/gr17.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf90/10878957/0d20c7b076f6/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf90/10878957/445e9d5d5040/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf90/10878957/ac5110a2039d/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf90/10878957/682949edd745/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf90/10878957/15fffd426069/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf90/10878957/27164f0eb87c/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf90/10878957/b528ba0c31e7/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf90/10878957/6270f62c89f7/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf90/10878957/02025d8c2f00/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf90/10878957/e56fca7a03e3/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf90/10878957/8a3b57bc6cf5/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf90/10878957/30b02fc6bd38/gr11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf90/10878957/a89a0998a5f5/gr12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf90/10878957/51df3cd3a575/gr13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf90/10878957/1687f9b868a8/gr14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf90/10878957/1197d3df04c4/gr15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf90/10878957/a77580073eb8/gr16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf90/10878957/0e1e4a6580ff/gr17.jpg

相似文献

[1]
Insights into the physico-chemical and biological characterization of sodium lignosulfonate - silver nanosystems designed for wound management.

Heliyon. 2024-2-9

[2]
Synthesis and Characterization of Silver Nanoparticles from and Studies on Their Wound Healing, Antioxidant, Anti-Inflammatory, and Cytotoxic Activity.

Molecules. 2022-9-24

[3]
Green Synthesis and Evaluation of Lepidium didymum-mediated Silver Nanoparticles for in vitro Antibacterial Activity and Wound Healing in the Animal Model.

J Oleo Sci. 2023-3-30

[4]
Fabrication of silver nanoparticles immobilized on magnetic lignosulfonate: Evaluation of its catalytic activity in the N-acetylation reactions and investigation of its anti-cutaneous squamous cell carcinoma effects.

Int J Biol Macromol. 2023-10-1

[5]
Green Synthesis of Silver Nanoparticles Using var. Natural Extract: Antibacterial and Cytotoxic Properties.

Nanomaterials (Basel). 2022-5-18

[6]
Macrofungal Mediated Biosynthesis of Silver Nanoparticles and Evaluation of Its Antibacterial and Wound-Healing Efficacy.

Int J Mol Sci. 2024-1-10

[7]
Design and decoration of copper nanoparticles into lignosulfonate-starch bionanocomposite: Characterization and evaluation of its therapeutic properties on burn wound.

Int J Biol Macromol. 2024-10

[8]
In Vitro Antibacterial and Wound Healing Activities Evoked by Silver Nanoparticles Synthesized through Probiotic Bacteria.

Antibiotics (Basel). 2023-1-10

[9]
Green synthesis of silver nanoparticles using cranberry powder aqueous extract: characterization and antimicrobial properties.

Int J Nanomedicine. 2015-12-1

[10]
Novel Eco-Synthesis of PD Silver Nanoparticles: Characterization, Assessment of Its Antimicrobial and Cytotoxicity Properties.

Materials (Basel). 2019-11-25

引用本文的文献

[1]
Antifungal and Antioxidant Activity of Thiourea Derivatives Against Nosocomial Strains Isolated in Romania.

Molecules. 2025-4-9

[2]
Postbiotic-Based Extracts from Native Probiotic Strains: A Promising Strategy for Food Preservation and Antimicrobial Defense.

Antibiotics (Basel). 2025-3-18

[3]
Emerging Resistance and Virulence Patterns in : Insights into Silver Nanoparticles as an Antimicrobial Strategy.

Antibiotics (Basel). 2025-1-7

[4]
Antioxidant, Antitumoral, Antimicrobial, and Prebiotic Activity of Magnetite Nanoparticles Loaded with Bee Pollen/Bee Bread Extracts and 5-Fluorouracil.

Antioxidants (Basel). 2024-7-24

[5]
Physico-Chemical and Biological Features of Fluorine-Substituted Hydroxyapatite Suspensions.

Materials (Basel). 2024-7-10

本文引用的文献

[1]
Preferential role of distinct phytochemicals in biosynthesis and antibacterial activity of silver nanoparticles.

J Environ Manage. 2023-10-15

[2]
Snail Slime Extracted by a Cruelty Free Method Preserves Viability and Controls Inflammation Occurrence: A Focus on Fibroblasts.

Molecules. 2023-1-26

[3]
Beneficial Effect of Wound Dressings Containing Silver and Silver Nanoparticles in Wound Healing-From Experimental Studies to Clinical Practice.

Life (Basel). 2022-12-26

[4]
Roles of Mitochondria in Oral Squamous Cell Carcinoma Therapy: Friend or Foe?

Cancers (Basel). 2022-11-22

[5]
Eco-Friendly Solution Based on Hydro-Alcoholic Extract to Prevent Biodeterioration of Cultural Heritage Objects and Buildings.

Int J Mol Sci. 2022-9-28

[6]
Polyphenol-Capped Biogenic Synthesis of Noble Metallic Silver Nanoparticles for Antifungal Activity against .

J Fungi (Basel). 2022-6-16

[7]
Facile green synthesis and applications of silver nanoparticles: a state-of-the-art review.

RSC Adv. 2019-10-29

[8]
Ecofriendly phytofabrication of silver nanoparticles using aqueous extract of Cuphea carthagenensis and their antioxidant potential and antibacterial activity against clinically important human pathogens.

Chemosphere. 2022-8

[9]
Role of eIF5A in Mitochondrial Function.

Int J Mol Sci. 2022-1-24

[10]
Lignin-Mediated Silver Nanoparticle Synthesis for Photocatalytic Degradation of Reactive Yellow 4G and In Vitro Assessment of Antioxidant, Antidiabetic, and Antibacterial Activities.

Polymers (Basel). 2022-2-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索