Suppr超能文献

人工智能应用于磁共振成像可靠地检测到半月板撕裂的存在,但不能确定其位置:系统评价和荟萃分析。

Artificial intelligence applied to magnetic resonance imaging reliably detects the presence, but not the location, of meniscus tears: a systematic review and meta-analysis.

机构信息

Imperial College London School of Medicine, Exhibition Rd, South Kensington, London, SW7 2BU, UK.

Imperial College London NHS Trust, London, UK.

出版信息

Eur Radiol. 2024 Sep;34(9):5954-5964. doi: 10.1007/s00330-024-10625-7. Epub 2024 Feb 22.

Abstract

OBJECTIVES

To review and compare the accuracy of convolutional neural networks (CNN) for the diagnosis of meniscal tears in the current literature and analyze the decision-making processes utilized by these CNN algorithms.

MATERIALS AND METHODS

PubMed, MEDLINE, EMBASE, and Cochrane databases up to December 2022 were searched in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) statement. Risk of analysis was used for all identified articles. Predictive performance values, including sensitivity and specificity, were extracted for quantitative analysis. The meta-analysis was divided between AI prediction models identifying the presence of meniscus tears and the location of meniscus tears.

RESULTS

Eleven articles were included in the final review, with a total of 13,467 patients and 57,551 images. Heterogeneity was statistically significantly large for the sensitivity of the tear identification analysis (I = 79%). A higher level of accuracy was observed in identifying the presence of a meniscal tear over locating tears in specific regions of the meniscus (AUC, 0.939 vs 0.905). Pooled sensitivity and specificity were 0.87 (95% confidence interval (CI) 0.80-0.91) and 0.89 (95% CI 0.83-0.93) for meniscus tear identification and 0.88 (95% CI 0.82-0.91) and 0.84 (95% CI 0.81-0.85) for locating the tears.

CONCLUSIONS

AI prediction models achieved favorable performance in the diagnosis, but not location, of meniscus tears. Further studies on the clinical utilities of deep learning should include standardized reporting, external validation, and full reports of the predictive performances of these models, with a view to localizing tears more accurately.

CLINICAL RELEVANCE STATEMENT

Meniscus tears are hard to diagnose in the knee magnetic resonance images. AI prediction models may play an important role in improving the diagnostic accuracy of clinicians and radiologists.

KEY POINTS

• Artificial intelligence (AI) provides great potential in improving the diagnosis of meniscus tears. • The pooled diagnostic performance for artificial intelligence (AI) in identifying meniscus tears was better (sensitivity 87%, specificity 89%) than locating the tears (sensitivity 88%, specificity 84%). • AI is good at confirming the diagnosis of meniscus tears, but future work is required to guide the management of the disease.

摘要

目的

综述并比较卷积神经网络(CNN)在当前文献中诊断半月板撕裂的准确性,并分析这些 CNN 算法的决策过程。

材料与方法

根据系统评价和荟萃分析的首选报告项目(PRISMA)声明,检索了截至 2022 年 12 月的 PubMed、MEDLINE、EMBASE 和 Cochrane 数据库。对所有确定的文章进行了风险分析。提取了定量分析的预测性能值,包括敏感性和特异性。荟萃分析分为 AI 预测模型识别半月板撕裂的存在和半月板撕裂的位置。

结果

最终综述纳入 11 篇文章,共 13467 例患者和 57551 张图像。撕裂识别分析的敏感性存在统计学显著的异质性(I=79%)。在识别半月板撕裂的存在方面,准确性高于定位半月板特定区域的撕裂(AUC,0.939 比 0.905)。半月板撕裂识别的汇总敏感性和特异性分别为 0.87(95%置信区间(CI)0.80-0.91)和 0.89(95% CI 0.83-0.93),定位撕裂的敏感性和特异性分别为 0.88(95% CI 0.82-0.91)和 0.84(95% CI 0.81-0.85)。

结论

AI 预测模型在半月板撕裂的诊断中表现出良好的性能,但在定位撕裂方面表现不佳。应进一步开展关于深度学习临床应用的研究,包括标准化报告、外部验证和充分报告这些模型的预测性能,以更准确地定位撕裂。

临床相关性声明

半月板撕裂在膝关节磁共振图像中难以诊断。人工智能(AI)预测模型可能在提高临床医生和放射科医生的诊断准确性方面发挥重要作用。

要点

  • 人工智能(AI)为改善半月板撕裂的诊断提供了巨大潜力。

  • 人工智能(AI)在识别半月板撕裂方面的汇总诊断性能优于定位撕裂(敏感性 87%,特异性 89%)。

  • AI 擅长于确认半月板撕裂的诊断,但需要进一步的工作来指导疾病的管理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f63/11364796/e809b5f57e71/330_2024_10625_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验