Tanwar Vishesh, Sharma Bhisham, Yadav Dhirendra Prasad, Webber Julian L, Mehbodniya Abolfazl
Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India.
Centre of Research Impact and Outcome, Chitkara University, Rajpura, Punjab, India.
PLoS One. 2025 Aug 27;20(8):e0330444. doi: 10.1371/journal.pone.0330444. eCollection 2025.
Knee Ailments, such as meniscus injuries, bother millions globally, with research showing that more than 14% of the population above 40 years lives with meniscus-related conditions. Conventional diagnosis techniques, like manual MRI interpretation, are labour-intensive, error-prone, and dependent on skilled radiologists, making an automatic and more accurate alternative indispensable. Current deep-learning solutions heavily depend on CNNs, which perform poorly in long-range dependencies and global contextual info. We proposed MV2SwimNet, a hybrid of MobileNetV2 and Swin Transformer, integrating Window Multi-Head Self-Attention (W-MSA) and Multi-Stage Hierarchical Representation (MSHR), efficiently incorporating both local and global features towards enhanced diagnostic capability. Our strategy utilizes the efficiency of lightweight MobileNetV2 coupled with a hierarchical architecture and self-attention-based Swin Transformer, enabling better spatial representation and advanced feature extraction. W-MSA allows our model to process MRI scans effectively by attending to the corresponding regions of images. In contrast, MSHR adjusts feature representations across different levels in a way that allows for progressive and robust learning in stages. We tested MV2SwimNet on two sets using 3-fold cross-validation and achieved 99.94% and 96.04% accuracy on dataset1 and dataset2, which beats state-of-the-art techniques. These results confirm MV2SwimNet efficiency, robustness, and real-world application potential in medicine, providing a highly accurate, automated medical diagnosis tool for knee disease detection. The code of the proposed method can be accessed through the URL: https://github.com/Visheshtanwar/MV2SwimNet.
膝关节疾病,如半月板损伤,困扰着全球数百万人,研究表明,40岁以上人群中超过14%患有与半月板相关的疾病。传统的诊断技术,如人工磁共振成像解读,劳动强度大、容易出错且依赖技术熟练的放射科医生,因此自动且更准确的替代方案必不可少。当前的深度学习解决方案严重依赖卷积神经网络(CNN),而CNN在处理长距离依赖和全局上下文信息方面表现不佳。我们提出了MV2SwimNet,它是MobileNetV2和Swin Transformer的混合体,集成了窗口多头自注意力机制(W-MSA)和多阶段层次表示(MSHR),能够有效融合局部和全局特征,从而提高诊断能力。我们的策略利用了轻量级MobileNetV2的效率,结合分层架构和基于自注意力机制的Swin Transformer,实现更好的空间表示和先进的特征提取。W-MSA使我们的模型能够通过关注图像的相应区域来有效处理磁共振成像扫描。相比之下,MSHR以一种允许在不同阶段进行渐进式和稳健学习的方式调整不同层次的特征表示。我们使用3折交叉验证在两组数据集上对MV2SwimNet进行了测试,在数据集1和数据集2上分别达到了99.94%和96.04%的准确率,超过了现有技术水平。这些结果证实了MV2SwimNet在医学领域的效率、稳健性和实际应用潜力,为膝关节疾病检测提供了一种高度准确的自动化医学诊断工具。所提出方法的代码可通过以下网址获取:https://github.com/Visheshtanwar/MV2SwimNet 。