Suppr超能文献

使用混合卷积和管腔形态特征的血管内 OCT 图像全自动斑块特征分析。

Fully automated plaque characterization in intravascular OCT images using hybrid convolutional and lumen morphology features.

机构信息

Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.

Cardiovascular Imaging Core Laboratory, Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA.

出版信息

Sci Rep. 2020 Feb 13;10(1):2596. doi: 10.1038/s41598-020-59315-6.

Abstract

For intravascular OCT (IVOCT) images, we developed an automated atherosclerotic plaque characterization method that used a hybrid learning approach, which combined deep-learning convolutional and hand-crafted, lumen morphological features. Processing was done on innate A-line units with labels fibrolipidic (fibrous tissue followed by lipidous tissue), fibrocalcific (fibrous tissue followed by calcification), or other. We trained/tested on an expansive data set (6,556 images), and performed an active learning, relabeling step to improve noisy ground truth labels. Conditional random field was an important post-processing step to reduce classification errors. Sensitivities/specificities were 84.8%/97.8% and 91.4%/95.7% for fibrolipidic and fibrocalcific plaques, respectively. Over lesions, en face classification maps showed automated results that agreed favorably to manually labeled counterparts. Adding lumen morphological features gave statistically significant improvement (p < 0.05), as compared to classification with convolutional features alone. Automated assessments of clinically relevant plaque attributes (arc angle and length), compared favorably to those from manual labels. Our hybrid approach gave statistically improved results as compared to previous A-line classification methods using deep learning or hand-crafted features alone. This plaque characterization approach is fully automated, robust, and promising for live-time treatment planning and research applications.

摘要

对于血管内 OCT(IVOCT)图像,我们开发了一种自动动脉粥样硬化斑块特征化方法,该方法采用混合学习方法,结合了深度学习卷积和手工制作的管腔形态特征。处理是在具有纤维脂质(纤维组织后接脂质组织)、纤维钙化(纤维组织后接钙化)或其他标签的固有 A 线单元上进行的。我们在一个广泛的数据集(6556 张图像)上进行了训练/测试,并进行了主动学习、重新标记步骤,以改善嘈杂的地面真实标签。条件随机场是减少分类错误的重要后处理步骤。纤维脂质和纤维钙化斑块的敏感性/特异性分别为 84.8%/97.8%和 91.4%/95.7%。在病变部位,正面分类图显示自动结果与手动标记的对应结果一致。与单独使用卷积特征进行分类相比,添加管腔形态特征可显著提高(p<0.05)。与手动标签相比,对临床相关斑块属性(弧角和长度)的自动评估结果更好。与单独使用深度学习或手工特征的以前的 A 线分类方法相比,我们的混合方法给出了统计学上更好的结果。这种斑块特征化方法是全自动的、稳健的,并且有望用于实时治疗计划和研究应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2d9/7018759/eb9a42362c27/41598_2020_59315_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验