Suppr超能文献

一种全面的计算基准,用于评估基于深度学习的蛋白质功能预测方法。

A comprehensive computational benchmark for evaluating deep learning-based protein function prediction approaches.

机构信息

School of Computer Science and Engineering, Central South University, 932 South Lushan Road, Yuelu District, Changsha 410083, China.

出版信息

Brief Bioinform. 2024 Jan 22;25(2). doi: 10.1093/bib/bbae050.

Abstract

Proteins play an important role in life activities and are the basic units for performing functions. Accurately annotating functions to proteins is crucial for understanding the intricate mechanisms of life and developing effective treatments for complex diseases. Traditional biological experiments struggle to keep pace with the growing number of known proteins. With the development of high-throughput sequencing technology, a wide variety of biological data provides the possibility to accurately predict protein functions by computational methods. Consequently, many computational methods have been proposed. Due to the diversity of application scenarios, it is necessary to conduct a comprehensive evaluation of these computational methods to determine the suitability of each algorithm for specific cases. In this study, we present a comprehensive benchmark, BeProf, to process data and evaluate representative computational methods. We first collect the latest datasets and analyze the data characteristics. Then, we investigate and summarize 17 state-of-the-art computational methods. Finally, we propose a novel comprehensive evaluation metric, design eight application scenarios and evaluate the performance of existing methods on these scenarios. Based on the evaluation, we provide practical recommendations for different scenarios, enabling users to select the most suitable method for their specific needs. All of these servers can be obtained from https://csuligroup.com/BEPROF and https://github.com/CSUBioGroup/BEPROF.

摘要

蛋白质在生命活动中起着重要的作用,是执行功能的基本单位。准确地注释蛋白质的功能对于理解生命的复杂机制和开发复杂疾病的有效治疗方法至关重要。传统的生物实验难以跟上已知蛋白质数量的增长。随着高通量测序技术的发展,各种生物数据为通过计算方法准确预测蛋白质功能提供了可能性。因此,已经提出了许多计算方法。由于应用场景的多样性,有必要对这些计算方法进行全面评估,以确定每个算法在特定情况下的适用性。在这项研究中,我们提出了一个全面的基准 BeProf 来处理数据和评估有代表性的计算方法。我们首先收集最新的数据集并分析数据特征。然后,我们调查和总结了 17 种最先进的计算方法。最后,我们提出了一种新的综合评价指标,设计了八个应用场景,并在这些场景下评估现有方法的性能。基于评估,我们为不同的场景提供了实用的建议,使用户能够根据自己的具体需求选择最合适的方法。所有这些服务器都可以从 https://csuligroup.com/BEPROFhttps://github.com/CSUBioGroup/BEPROF 获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验