Suppr超能文献

一种用于在腹部平片上识别小肠梗阻的人工智能深度学习模型。

An artificial intelligence deep learning model for identification of small bowel obstruction on plain abdominal radiographs.

作者信息

Kim D H, Wit H, Thurston M, Long M, Maskell G F, Strugnell M J, Shetty D, Smith I M, Hollings N P

机构信息

The Department of Clinical Imaging, The Royal Cornwall Hospitals NHS Trust, Truro, UK.

The Medical Imaging Department, University Hospitals Plymouth NHS Trust, Plymouth, UK.

出版信息

Br J Radiol. 2021 Jun 1;94(1122):20201407. doi: 10.1259/bjr.20201407. Epub 2021 Apr 27.

Abstract

OBJECTIVES

Small bowel obstruction is a common surgical emergency which can lead to bowel necrosis, perforation and death. Plain abdominal X-rays are frequently used as a first-line test but the availability of immediate expert radiological review is variable. The aim was to investigate the feasibility of using a deep learning model for automated identification of small bowel obstruction.

METHODS

A total of 990 plain abdominal radiographs were collected, 445 with normal findings and 445 demonstrating small bowel obstruction. The images were labelled using the radiology reports, subsequent CT scans, surgical operation notes and enhanced radiological review. The data were used to develop a predictive model comprising an ensemble of five convolutional neural networks trained using transfer learning.

RESULTS

The performance of the model was excellent with an area under the receiver operator curve (AUC) of 0.961, corresponding to sensitivity and specificity of 91 and 93% respectively.

CONCLUSION

Deep learning can be used to identify small bowel obstruction on plain radiographs with a high degree of accuracy. A system such as this could be used to alert clinicians to the presence of urgent findings with the potential for expedited clinical review and improved patient outcomes.

ADVANCES IN KNOWLEDGE

This paper describes a novel labelling method using composite clinical follow-up and demonstrates that ensemble models can be used effectively in medical imaging tasks. It also provides evidence that deep learning methods can be used to identify small bowel obstruction with high accuracy.

摘要

目的

小肠梗阻是一种常见的外科急症,可导致肠坏死、穿孔甚至死亡。腹部平片常被用作一线检查方法,但能否立即获得专家放射学评估存在差异。本研究旨在探讨使用深度学习模型自动识别小肠梗阻的可行性。

方法

共收集990张腹部平片,其中445张结果正常,445张显示小肠梗阻。利用放射学报告、后续CT扫描、手术记录和强化放射学评估对图像进行标注。这些数据被用于开发一个预测模型,该模型由五个使用迁移学习训练的卷积神经网络组成。

结果

该模型表现出色,受试者工作特征曲线下面积(AUC)为0.961,灵敏度和特异度分别为91%和93%。

结论

深度学习可用于在腹部平片上高度准确地识别小肠梗阻。这样的系统可用于提醒临床医生注意紧急情况的存在,有可能加快临床评估并改善患者预后。

知识进展

本文描述了一种使用综合临床随访的新型标注方法,并证明集成模型可有效用于医学成像任务。它还提供了证据表明深度学习方法可用于高精度识别小肠梗阻。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc28/8173678/447ed5a60dbb/bjr.20201407.g001.jpg

相似文献

1
An artificial intelligence deep learning model for identification of small bowel obstruction on plain abdominal radiographs.
Br J Radiol. 2021 Jun 1;94(1122):20201407. doi: 10.1259/bjr.20201407. Epub 2021 Apr 27.
2
Development and validation of deep learning models for bowel obstruction on plain abdominal radiograph.
J Int Med Res. 2024 Sep;52(9):3000605241271844. doi: 10.1177/03000605241271844.
3
Deep learning for automatic bowel-obstruction identification on abdominal CT.
Eur Radiol. 2024 Sep;34(9):5842-5853. doi: 10.1007/s00330-024-10657-z. Epub 2024 Feb 22.
4
Detection of high-grade small bowel obstruction on conventional radiography with convolutional neural networks.
Abdom Radiol (NY). 2018 May;43(5):1120-1127. doi: 10.1007/s00261-017-1294-1.
5
Refining Convolutional Neural Network Detection of Small-Bowel Obstruction in Conventional Radiography.
AJR Am J Roentgenol. 2019 Feb;212(2):342-350. doi: 10.2214/AJR.18.20362. Epub 2018 Nov 26.
6
Reliability and role of plain film radiography and CT in the diagnosis of small-bowel obstruction.
AJR Am J Roentgenol. 1996 Dec;167(6):1451-5. doi: 10.2214/ajr.167.6.8956576.
8
[Efficacy of abdominal plain film and CT in bowel obstruction].
Nihon Igaku Hoshasen Gakkai Zasshi. 1995 Mar;55(4):233-9.
9
CT diagnosis of small-bowel obstruction: efficacy in 60 patients.
AJR Am J Roentgenol. 1992 Apr;158(4):765-9; discussion 771-2. doi: 10.2214/ajr.158.4.1546591.

引用本文的文献

1
Evolving and Novel Applications of Artificial Intelligence in Abdominal Imaging.
Tomography. 2024 Nov 18;10(11):1814-1831. doi: 10.3390/tomography10110133.
2
Applying Deep-Learning Algorithm Interpreting Kidney, Ureter, and Bladder (KUB) X-Rays to Detect Colon Cancer.
J Imaging Inform Med. 2025 Jun;38(3):1606-1616. doi: 10.1007/s10278-024-01309-1. Epub 2024 Oct 31.
3
Development and validation of deep learning models for bowel obstruction on plain abdominal radiograph.
J Int Med Res. 2024 Sep;52(9):3000605241271844. doi: 10.1177/03000605241271844.
4
Towards an EKG for SBO: A Neural Network for Detection and Characterization of Bowel Obstruction on CT.
J Imaging Inform Med. 2024 Aug;37(4):1411-1423. doi: 10.1007/s10278-024-01023-y. Epub 2024 Feb 22.
5
Visual Image Annotation for Bowel Obstruction: Repeatability and Agreement with Manual Annotation and Neural Networks.
J Digit Imaging. 2023 Oct;36(5):2179-2193. doi: 10.1007/s10278-023-00825-w. Epub 2023 Jun 6.
6
Role of artificial intelligence in oncologic emergencies: a narrative review.
Explor Target Antitumor Ther. 2023;4(2):344-354. doi: 10.37349/etat.2023.00138. Epub 2023 Apr 28.
7
Artificial Intelligence in Emergency Radiology: Where Are We Going?
Diagnostics (Basel). 2022 Dec 19;12(12):3223. doi: 10.3390/diagnostics12123223.
8
Neural Network Detection of Pacemakers for MRI Safety.
J Digit Imaging. 2022 Dec;35(6):1673-1680. doi: 10.1007/s10278-022-00663-2. Epub 2022 Jun 29.
10
Adhesion-related small bowel obstruction: deep learning for automatic transition-zone detection by CT.
Insights Imaging. 2022 Jan 24;13(1):13. doi: 10.1186/s13244-021-01150-y.

本文引用的文献

1
Effect of augmented datasets on deep convolutional neural networks applied to chest radiographs.
Clin Radiol. 2019 Sep;74(9):697-701. doi: 10.1016/j.crad.2019.04.025. Epub 2019 Jun 10.
2
Refining Convolutional Neural Network Detection of Small-Bowel Obstruction in Conventional Radiography.
AJR Am J Roentgenol. 2019 Feb;212(2):342-350. doi: 10.2214/AJR.18.20362. Epub 2018 Nov 26.
3
Small bowel obstruction in the elderly: a plea for comprehensive acute geriatric care.
World J Emerg Surg. 2018 Oct 20;13:48. doi: 10.1186/s13017-018-0208-z. eCollection 2018.
5
Detection of high-grade small bowel obstruction on conventional radiography with convolutional neural networks.
Abdom Radiol (NY). 2018 May;43(5):1120-1127. doi: 10.1007/s00261-017-1294-1.
6
Overview of deep learning in medical imaging.
Radiol Phys Technol. 2017 Sep;10(3):257-273. doi: 10.1007/s12194-017-0406-5. Epub 2017 Jul 8.
7
Dermatologist-level classification of skin cancer with deep neural networks.
Nature. 2017 Feb 2;542(7639):115-118. doi: 10.1038/nature21056. Epub 2017 Jan 25.
8
Bowel Obstruction.
Radiol Clin North Am. 2015 Nov;53(6):1225-40. doi: 10.1016/j.rcl.2015.06.008.
9
Deep learning.
Nature. 2015 May 28;521(7553):436-44. doi: 10.1038/nature14539.
10
Review of small-bowel obstruction: the diagnosis and when to worry.
Radiology. 2015 May;275(2):332-42. doi: 10.1148/radiol.15131519.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验