Suppr超能文献

用于骨组织工程的3D打印压电钛酸钡/聚羟基丁酸酯纳米复合支架

3D Printed Piezoelectric BaTiO/Polyhydroxybutyrate Nanocomposite Scaffolds for Bone Tissue Engineering.

作者信息

Strangis Giovanna, Labardi Massimiliano, Gallone Giuseppe, Milazzo Mario, Capaccioli Simone, Forli Francesca, Cinelli Patrizia, Berrettini Stefano, Seggiani Maurizia, Danti Serena, Parchi Paolo

机构信息

Department of Civil and Industrial Engineering, University of Pisa, Largo L. Lazzarino 2, 56122 Pisa, Italy.

Institute for Chemical and Physical Processes (IPCF), National Research Council (CNR), Pisa Research Area, Via Moruzzi 1, 56124 Pisa, Italy.

出版信息

Bioengineering (Basel). 2024 Feb 17;11(2):193. doi: 10.3390/bioengineering11020193.

Abstract

Bone defects are a significant health problem worldwide. Novel treatment approaches in the tissue engineering field rely on the use of biomaterial scaffolds to stimulate and guide the regeneration of damaged tissue that cannot repair or regrow spontaneously. This work aimed at developing and characterizing new piezoelectric scaffolds to provide electric bio-signals naturally present in bone and vascular tissues. Mixing and extrusion were used to obtain nanocomposites made of polyhydroxybutyrate (PHB) as a matrix and barium titanate (BaTiO) nanoparticles as a filler, at BaTiO/PHB compositions of 5/95, 10/90, 15/85 and 20/80 (w/w%). The morphological, thermal, mechanical and piezoelectric properties of the nanocomposites were studied. Scanning electron microscopy analysis showed good nanoparticle dispersion within the polymer matrix. Considerable increases in the Young's modulus, compressive strength and the piezoelectric coefficient were observed with increasing BaTiO content, with = 37 pm/V in 20/80 (w/w%) BaTiO/PHB. 3D printing was used to produce porous cubic-shaped scaffolds using a 90° lay-down pattern, with pore size ranging in 0.60-0.77 mm and good mechanical stability. Biodegradation tests conducted for 8 weeks in saline solution at 37 °C showed low mass loss (∼4%) for 3D printed scaffolds. The results obtained in terms of piezoelectric, mechanical and chemical properties of the nanocomposite provide a new promising strategy for vascularized bone tissue engineering.

摘要

骨缺损是全球范围内一个重大的健康问题。组织工程领域的新型治疗方法依赖于使用生物材料支架来刺激和引导受损组织的再生,这些组织无法自行修复或再生。这项工作旨在开发和表征新型压电支架,以提供骨骼和血管组织中天然存在的电生物信号。采用混合和挤压工艺,以聚羟基丁酸酯(PHB)为基质、钛酸钡(BaTiO)纳米颗粒为填料,制备了BaTiO/PHB质量比为5/95、10/90、15/85和20/80的纳米复合材料。研究了纳米复合材料的形态、热、力学和压电性能。扫描电子显微镜分析表明纳米颗粒在聚合物基质中分散良好。随着BaTiO含量的增加,杨氏模量、抗压强度和压电系数显著提高,在20/80(w/w%)BaTiO/PHB中d33 = 37 pm/V。采用3D打印技术,以90°铺层模式制备了孔径为0.60 - 0.77 mm且具有良好机械稳定性的多孔立方体形支架。在37℃的盐溶液中进行8周的生物降解试验表明,3D打印支架的质量损失较低(约4%)。纳米复合材料在压电、力学和化学性能方面取得的结果为血管化骨组织工程提供了一种新的有前景的策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cc0/10886384/c0007ae75436/bioengineering-11-00193-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验