Suppr超能文献

压电 BaTiO3 纳米颗粒涂层的三维打印 Ti6Al4V 支架对骨形成的生物学效应。

Biological Effects of a Three-Dimensionally Printed Ti6Al4V Scaffold Coated with Piezoelectric BaTiO Nanoparticles on Bone Formation.

机构信息

Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.

Shenyang National Laboratory for Materials Science, Institute of Metal Research Chinese Academy of Sciences, Shenyang 110016, China.

出版信息

ACS Appl Mater Interfaces. 2020 Nov 18;12(46):51885-51903. doi: 10.1021/acsami.0c10957. Epub 2020 Nov 9.

Abstract

Bone defect repair at load-bearing sites is a challenging clinical problem for orthopedists. Defect reconstruction with implants is the most common treatment; however, it requires the implant to have good mechanical properties and the capacity to promote bone formation. In recent years, the piezoelectric effect, in which electrical activity can be generated due to mechanical deformation, of native bone, which promotes bone formation, has been increasingly valued. Therefore, implants with piezoelectric effects have also attracted great attention from orthopedists. In this study, we developed a bioactive composite scaffold consisting of BaTiO, a piezoelectric ceramic material, coated on porous Ti6Al4V. This composite scaffold showed not only appropriate mechanical properties, sufficient bone and blood vessel ingrowth space, and a suitable material surface topography but also a reconstructed electromagnetic microenvironment. The osteoconductive and osteoinductive properties of the scaffold were reflected by the proliferation, migration, and osteogenic differentiation of mesenchymal stem cells. The ability of the scaffold to support vascularization was reflected by the proliferation and migration of human umbilical vein endothelial cells and their secretion of VEGF and PDGF-BB. A well-established sheep spinal fusion model was used to evaluate bony fusion in vivo. Sheep underwent implantation with different scaffolds, and X-ray, micro-computed tomography, van Gieson staining, and elemental energy-dispersive spectroscopy were used to analyze bone formation. Isolated cervical angiography and visualization analysis were used to assess angiogenesis at 4 and 8 months after transplantation. The results of cellular and animal studies showed that the piezoelectric effect could significantly reinforce osteogenesis and angiogenesis. Furthermore, we also discuss the molecular mechanism by which the piezoelectric effect promotes osteogenic differentiation and vascularization. In summary, Ti6Al4V scaffold coated with BaTiO is a promising composite biomaterial for repairing bone defects, especially at load-bearing sites, that may have great clinical translation potential.

摘要

在承重部位进行骨缺损修复是矫形外科医生面临的一项具有挑战性的临床难题。用植入物进行缺损重建是最常见的治疗方法;然而,它需要植入物具有良好的机械性能和促进骨形成的能力。近年来,天然骨的压电效应(即由于机械变形可以产生电活动),促进骨形成,越来越受到重视。因此,具有压电效应的植入物也引起了矫形外科医生的极大关注。在这项研究中,我们开发了一种由 BaTiO3 组成的生物活性复合支架,这是一种压电陶瓷材料,涂覆在多孔 Ti6Al4V 上。这种复合支架不仅具有适当的机械性能、充足的骨和血管生长空间以及合适的材料表面形貌,而且还具有重建的电磁微环境。支架的骨诱导和骨诱导特性反映在间充质干细胞的增殖、迁移和成骨分化上。支架支持血管生成的能力反映在人脐静脉内皮细胞的增殖、迁移及其分泌的 VEGF 和 PDGF-BB 上。建立了一个成熟的绵羊脊柱融合模型,用于体内评估骨性融合。绵羊接受不同支架的植入,并用 X 射线、微计算机断层扫描、Van Gieson 染色和元素能量色散光谱分析骨形成。进行单独的颈椎血管造影和可视化分析,以评估移植后 4 和 8 个月的血管生成情况。细胞和动物研究的结果表明,压电效应可以显著增强成骨和血管生成。此外,我们还讨论了压电效应促进成骨分化和血管生成的分子机制。综上所述,涂覆有 BaTiO3 的 Ti6Al4V 支架是一种很有前途的修复骨缺损的复合生物材料,特别是在承重部位,可能具有很大的临床转化潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验