Suppr超能文献

PAIRUP-MS:基于质谱的代谢物数据谱中未知物的途径分析和推断。

PAIRUP-MS: Pathway analysis and imputation to relate unknowns in profiles from mass spectrometry-based metabolite data.

机构信息

Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America.

Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, Massachusetts, United States of America.

出版信息

PLoS Comput Biol. 2019 Jan 14;15(1):e1006734. doi: 10.1371/journal.pcbi.1006734. eCollection 2019 Jan.

Abstract

Metabolomics is a powerful approach for discovering biomarkers and for characterizing the biochemical consequences of genetic variation. While untargeted metabolite profiling can measure thousands of signals in a single experiment, many biologically meaningful signals cannot be readily identified as known metabolites nor compared across datasets, making it difficult to infer biology and to conduct well-powered meta-analyses across studies. To overcome these challenges, we developed a suite of computational methods, PAIRUP-MS, to match metabolite signals across mass spectrometry-based profiling datasets and to generate metabolic pathway annotations for these signals. To pair up signals measured in different datasets, where retention times (RT) are often not comparable or even available, we implemented an imputation-based approach that only requires mass-to-charge ratios (m/z). As validation, we treated each shared known metabolite as an unmatched signal and showed that PAIRUP-MS correctly matched 70-88% of these metabolites from among thousands of signals, equaling or outperforming a standard m/z- and RT-based approach. We performed further validation using genetic data: the most stringent set of matched signals and shared knowns showed comparable consistency of genetic associations across datasets. Next, we developed a pathway reconstitution method to annotate unknown signals using curated metabolic pathways containing known metabolites. We performed genetic validation for the generated annotations, showing that annotated signals associated with gene variants were more likely to be enriched for pathways functionally related to the genes compared to random expectation. Finally, we applied PAIRUP-MS to study associations between metabolites and genetic variants or body mass index (BMI) across multiple datasets, identifying up to ~6 times more significant signals and many more BMI-associated pathways compared to the standard practice of only analyzing known metabolites. These results demonstrate that PAIRUP-MS enables analysis of unknown signals in a robust, biologically meaningful manner and provides a path to more comprehensive, well-powered studies of untargeted metabolomics data.

摘要

代谢组学是一种强大的方法,可用于发现生物标志物并描述遗传变异的生化后果。虽然非靶向代谢物分析可以在单次实验中测量数千个信号,但许多具有生物学意义的信号不能轻易识别为已知代谢物,也不能在数据集之间进行比较,这使得难以推断生物学并在研究之间进行有力的荟萃分析。为了克服这些挑战,我们开发了一套计算方法 PAIRUP-MS,用于匹配基于质谱的 profiling 数据集之间的代谢物信号,并为这些信号生成代谢途径注释。为了将在不同数据集测量的信号进行配对,其中保留时间(RT)通常不可比甚至不可用,我们实施了一种基于插补的方法,该方法仅需要质荷比(m/z)。作为验证,我们将每个共享的已知代谢物视为未配对的信号,并表明 PAIRUP-MS 正确地将数千个信号中的 70-88%的这些代谢物匹配,等于或优于标准的 m/z 和 RT 基础方法。我们使用遗传数据进行了进一步验证:最严格的匹配信号和共享已知物集在数据集之间显示出遗传关联的一致性。接下来,我们开发了一种途径重建方法,使用包含已知代谢物的经过精心整理的代谢途径来注释未知信号。我们对生成的注释进行了遗传验证,结果表明与基因变异相关的注释信号与基因功能相关的途径富集的可能性高于随机预期。最后,我们在多个数据集上应用 PAIRUP-MS 来研究代谢物与遗传变异或体重指数(BMI)之间的关联,与仅分析已知代谢物的标准做法相比,识别出多达~6 倍的更显著信号和更多的 BMI 相关途径。这些结果表明,PAIRUP-MS 能够以稳健、有生物学意义的方式分析未知信号,并为更全面、有力的非靶向代谢组学数据研究提供了途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a62/6347288/ee526f7c8fb2/pcbi.1006734.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验