Suppr超能文献

鉴定 MIMAS,一种多功能巨型组装体,整合了线粒体代谢和呼吸生物发生因子。

Identification of MIMAS, a multifunctional mega-assembly integrating metabolic and respiratory biogenesis factors of mitochondria.

机构信息

Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.

Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany.

出版信息

Cell Rep. 2024 Mar 26;43(3):113772. doi: 10.1016/j.celrep.2024.113772. Epub 2024 Feb 22.

Abstract

The mitochondrial inner membrane plays central roles in bioenergetics and metabolism and contains several established membrane protein complexes. Here, we report the identification of a mega-complex of the inner membrane, termed mitochondrial multifunctional assembly (MIMAS). Its large size of 3 MDa explains why MIMAS has escaped detection in the analysis of mitochondria so far. MIMAS combines proteins of diverse functions from respiratory chain assembly to metabolite transport, dehydrogenases, and lipid biosynthesis but not the large established supercomplexes of the respiratory chain, ATP synthase, or prohibitin scaffold. MIMAS integrity depends on the non-bilayer phospholipid phosphatidylethanolamine, in contrast to respiratory supercomplexes whose stability depends on cardiolipin. Our findings suggest that MIMAS forms a protein-lipid mega-assembly in the mitochondrial inner membrane that integrates respiratory biogenesis and metabolic processes in a multifunctional platform.

摘要

线粒体的内膜在生物能量学和新陈代谢中起着核心作用,并且包含几个已建立的膜蛋白复合物。在这里,我们报告了内膜的一个巨型复合物的鉴定,称为线粒体多功能组装体(MIMAS)。它的 3 MDa 大尺寸解释了为什么 MIMAS 在迄今为止的线粒体分析中一直未被检测到。MIMAS 结合了来自呼吸链组装到代谢物运输、脱氢酶和脂质生物合成等多种功能的蛋白质,但不包括呼吸链、ATP 合酶或抑制素支架的大型已建立的超级复合物。MIMAS 的完整性取决于非双层磷脂磷脂酰乙醇胺,而与呼吸超级复合物的稳定性取决于心磷脂相反。我们的发现表明,MIMAS 在线粒体内膜中形成一个蛋白质 - 脂质巨型组装体,将呼吸生物发生和代谢过程整合到一个多功能平台中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58ab/11010658/8221ef03a805/nihms-1980896-f0002.jpg

相似文献

1
Identification of MIMAS, a multifunctional mega-assembly integrating metabolic and respiratory biogenesis factors of mitochondria.
Cell Rep. 2024 Mar 26;43(3):113772. doi: 10.1016/j.celrep.2024.113772. Epub 2024 Feb 22.
2
Effects of lipids on mitochondrial functions.
Biochim Biophys Acta Mol Cell Biol Lipids. 2017 Jan;1862(1):102-113. doi: 10.1016/j.bbalip.2016.06.015. Epub 2016 Jun 24.
3
Functional role of cardiolipin in mitochondrial bioenergetics.
Biochim Biophys Acta. 2014 Apr;1837(4):408-17. doi: 10.1016/j.bbabio.2013.10.006. Epub 2013 Oct 29.
4
Specific requirements of nonbilayer phospholipids in mitochondrial respiratory chain function and formation.
Mol Biol Cell. 2016 Jul 15;27(14):2161-71. doi: 10.1091/mbc.E15-12-0865. Epub 2016 May 25.
5
Phosphatidylethanolamine and cardiolipin differentially affect the stability of mitochondrial respiratory chain supercomplexes.
J Mol Biol. 2012 Nov 9;423(5):677-86. doi: 10.1016/j.jmb.2012.09.001. Epub 2012 Sep 10.
6
Phospholipid ebb and flow makes mitochondria go.
J Cell Biol. 2020 Aug 3;219(8). doi: 10.1083/jcb.202003131.
7
In yeast, cardiolipin unsaturation level plays a key role in mitochondrial function and inner membrane integrity.
Biochim Biophys Acta Bioenerg. 2022 Oct 1;1863(7):148587. doi: 10.1016/j.bbabio.2022.148587. Epub 2022 Jun 30.
8
The role of nonbilayer phospholipids in mitochondrial structure and function.
FEBS Lett. 2018 Apr;592(8):1273-1290. doi: 10.1002/1873-3468.12887. Epub 2017 Nov 9.
10
Intramitochondrial phospholipid trafficking.
Biochim Biophys Acta Mol Cell Biol Lipids. 2017 Jan;1862(1):81-89. doi: 10.1016/j.bbalip.2016.08.006. Epub 2016 Aug 16.

本文引用的文献

1
Role of the small protein Mco6 in the mitochondrial sorting and assembly machinery.
Cell Rep. 2024 Mar 26;43(3):113805. doi: 10.1016/j.celrep.2024.113805. Epub 2024 Feb 19.
2
Early fate decision for mitochondrially encoded proteins by a molecular triage.
Mol Cell. 2023 Oct 5;83(19):3470-3484.e8. doi: 10.1016/j.molcel.2023.09.001. Epub 2023 Sep 25.
3
Molecular pathway of mitochondrial preprotein import through the TOM-TIM23 supercomplex.
Nat Struct Mol Biol. 2023 Dec;30(12):1996-2008. doi: 10.1038/s41594-023-01103-7. Epub 2023 Sep 11.
4
OPA1 helical structures give perspective to mitochondrial dysfunction.
Nature. 2023 Aug;620(7976):1109-1116. doi: 10.1038/s41586-023-06462-1. Epub 2023 Aug 23.
5
Structural mechanism of mitochondrial membrane remodelling by human OPA1.
Nature. 2023 Aug;620(7976):1101-1108. doi: 10.1038/s41586-023-06441-6. Epub 2023 Aug 23.
6
Central role of Tim17 in mitochondrial presequence protein translocation.
Nature. 2023 Sep;621(7979):627-634. doi: 10.1038/s41586-023-06477-8. Epub 2023 Aug 1.
7
Structural basis of mitochondrial protein import by the TIM23 complex.
Nature. 2023 Sep;621(7979):620-626. doi: 10.1038/s41586-023-06239-6. Epub 2023 Jun 21.
8
Cryo-EM structure and function of S. pombe complex IV with bound respiratory supercomplex factor.
Commun Chem. 2023 Feb 16;6(1):32. doi: 10.1038/s42004-023-00827-3.
9
Mitochondrial complexome reveals quality-control pathways of protein import.
Nature. 2023 Feb;614(7946):153-159. doi: 10.1038/s41586-022-05641-w. Epub 2023 Jan 25.
10
Structural insights into crista junction formation by the Mic60-Mic19 complex.
Sci Adv. 2022 Sep 2;8(35):eabo4946. doi: 10.1126/sciadv.abo4946. Epub 2022 Aug 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验