Berritta Fabrizio, Rasmussen Torbjørn, Krzywda Jan A, van der Heijden Joost, Fedele Federico, Fallahi Saeed, Gardner Geoffrey C, Manfra Michael J, van Nieuwenburg Evert, Danon Jeroen, Chatterjee Anasua, Kuemmeth Ferdinand
Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100, Copenhagen, Denmark.
Lorentz Institute and Leiden Institute of Advanced Computer Science, Leiden University, P.O. Box 9506, 2300 RA, Leiden, The Netherlands.
Nat Commun. 2024 Feb 23;15(1):1676. doi: 10.1038/s41467-024-45857-0.
Optimal control of qubits requires the ability to adapt continuously to their ever-changing environment. We demonstrate a real-time control protocol for a two-electron singlet-triplet qubit with two fluctuating Hamiltonian parameters. Our approach leverages single-shot readout classification and dynamic waveform generation, allowing full Hamiltonian estimation to dynamically stabilize and optimize the qubit performance. Powered by a field-programmable gate array (FPGA), the quantum control electronics estimates the Overhauser field gradient between the two electrons in real time, enabling controlled Overhauser-driven spin rotations and thus bypassing the need for micromagnets or nuclear polarization protocols. It also estimates the exchange interaction between the two electrons and adjusts their detuning, resulting in extended coherence of Hadamard rotations when correcting for fluctuations of both qubit axes. Our study highlights the role of feedback in enhancing the performance and stability of quantum devices affected by quasistatic noise.
量子比特的最优控制需要具备持续适应其不断变化环境的能力。我们展示了一种针对具有两个波动哈密顿量参数的双电子单重态 - 三重态量子比特的实时控制协议。我们的方法利用单次读出分类和动态波形生成,实现全哈密顿量估计以动态稳定并优化量子比特性能。由现场可编程门阵列(FPGA)驱动,量子控制电子设备实时估计两个电子之间的奥弗豪泽场梯度,实现可控的奥弗豪泽驱动自旋旋转,从而无需微磁体或核极化协议。它还估计两个电子之间的交换相互作用并调整它们的失谐,在校正两个量子比特轴的波动时,使哈达玛旋转的相干性得以延长。我们的研究突出了反馈在增强受准静态噪声影响的量子器件性能和稳定性方面的作用。