Suppr超能文献

MTD-YOLOv5:通过YOLOv5模型中的多尺度特征融合增强海洋目标检测

MTD-YOLOv5: Enhancing marine target detection with multi-scale feature fusion in YOLOv5 model.

作者信息

Lian-Suo W E I, Shen-Hao Huang, Long-Yu Ma

机构信息

School of information engineering, Suqian University, SuQian, jiangsu 223800, China.

College of Computer & Control Engineering, Qiqihar University, Qiqihar, Heilongjiang, 161006, China.

出版信息

Heliyon. 2024 Feb 13;10(4):e26145. doi: 10.1016/j.heliyon.2024.e26145. eCollection 2024 Feb 29.

Abstract

Underwater light attenuation leads to decreased image contrast. This reduction in contrast subsequently decreases target visibility. Additionally, marine target detection is challenging due to multi-scale problems from varying target-to-device distances, complex target clustering, and noise from waterborne particulates.To address these issues, we propose MTD-YOLOv5.Initially, we enhance image contrast with grayscale equalization and mitigate color shift issues through color space transformation.We then introduce a novel feature extraction module, PCBR, combining max pooling and convolution layers for more effective target feature extraction from the background.Furthermore, we present the Multi-Scale Perceptual Hybrid Pooling (MHP) module.This module integrates horizontal and vertical receptive fields to establish long-range dependencies, thereby capturing hidden target information in deep network feature maps. In the Labeled Fishes in the Wild test datasets, MTD-YOLOv5 achieves a precision of 88.1% and a mean Average Precision (mAP[0.5:.95]) of 49.6%.These results represent improvements of 2.6% in precision and 0.4% in mAP over the original YOLOv5.

摘要

水下光衰减会导致图像对比度降低。这种对比度的降低随后会降低目标可见性。此外,由于目标与设备距离不同导致的多尺度问题、复杂的目标聚类以及水中颗粒物产生的噪声,海洋目标检测具有挑战性。为了解决这些问题,我们提出了MTD-YOLOv5。首先,我们通过灰度均衡增强图像对比度,并通过颜色空间变换减轻颜色偏移问题。然后,我们引入了一种新颖的特征提取模块PCBR,它结合了最大池化和卷积层,以便从背景中更有效地提取目标特征。此外,我们还提出了多尺度感知混合池化(MHP)模块。该模块整合水平和垂直感受野以建立长距离依赖关系,从而在深度网络特征图中捕获隐藏的目标信息。在野生标记鱼类测试数据集中,MTD-YOLOv5的精度达到88.1%,平均精度均值(mAP[0.5:.95])为49.6%。这些结果表明,与原始YOLOv5相比,精度提高了2.6%,mAP提高了0.4%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13f9/10881355/5509076159c7/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验