Department of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Trondheim, Norway.
Evolutionary Biology, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden.
Mol Ecol. 2024 Mar;33(6):e17295. doi: 10.1111/mec.17295. Epub 2024 Feb 23.
Dispersal affects evolutionary processes by changing population size and genetic composition, influencing the viability and persistence of populations. Investigating which mechanisms underlie variation in dispersal phenotypes and whether populations harbour adaptive potential for dispersal is crucial to understanding the eco-evolutionary dynamics of this important trait. Here, we investigate the genetic architecture of dispersal among successfully recruited individuals in an insular metapopulation of house sparrows. We use an extensive long-term individual-based ecological data set and high-density single-nucleotide polymorphism (SNP) genotypes for over 2500 individuals. We conducted a genome-wide association study (GWAS), and found a relationship between dispersal probability and a SNP located near genes known to regulate circadian rhythm, glycogenesis and exercise performance, among other functions. However, this SNP only explained 3.8% of variance, suggesting that dispersal is a polygenic trait. We then used an animal model to estimate heritable genetic variation (σ ), which composes 10% of the total variation in dispersal probability. Finally, we investigated differences in σ across populations occupying ecologically relevant habitat types (farm vs. non-farm) using a genetic groups animal model. We found different adaptive potentials across habitats, with higher mean breeding value, σ , and heritability for the habitat presenting lower dispersal rates, suggesting also different roles of environmental variation. Our results suggest a complex genetic architecture of dispersal and demonstrate that adaptive potential may be environment dependent in key eco-evolutionary traits. The eco-evolutionary implications of such environment dependence and consequent spatial variation are likely to become ever more important with the increased fragmentation and loss of suitable habitats for many natural populations.
扩散通过改变种群大小和遗传组成来影响进化过程,从而影响种群的生存能力和持久性。研究导致扩散表型变化的机制以及种群是否具有扩散的适应性潜力,对于理解这一重要特征的生态进化动态至关重要。在这里,我们调查了在一个岛屿麻雀的复合种群中成功招募个体之间的扩散的遗传结构。我们使用了一个广泛的长期基于个体的生态数据集和超过 2500 个个体的高密度单核苷酸多态性 (SNP) 基因型。我们进行了全基因组关联研究 (GWAS),发现扩散概率与位于调节昼夜节律、糖生成和运动表现等功能的基因附近的 SNP 之间存在关系。然而,这个 SNP 只解释了 3.8%的方差,表明扩散是一个多基因性状。然后,我们使用动物模型来估计可遗传的遗传变异 (σ),它构成了扩散概率总变异的 10%。最后,我们使用遗传群体动物模型研究了在生态上具有相关栖息地类型(农场与非农场)的种群之间的 σ 差异。我们发现,不同的栖息地具有不同的适应潜力,具有较低扩散率的栖息地的平均繁殖值、σ 和遗传力较高,这表明环境变化的作用也不同。我们的研究结果表明,扩散具有复杂的遗传结构,并证明了适应潜力可能在关键的生态进化特征中依赖于环境。随着许多自然种群的栖息地日益破碎和丧失,这种环境依赖性和随之而来的空间变异的生态进化意义可能变得越来越重要。