Ni Yu-Ching, Lin Zhi-Kun, Cheng Chen-Han, Pai Ming-Chyi, Chiu Pai-Yi, Chang Chiung-Chih, Chang Ya-Ting, Hung Guang-Uei, Lin Kun-Ju, Hsiao Ing-Tsung, Lin Chia-Yu, Yang Hui-Chieh
Department of Radiation Protection, National Atomic Research Institute, Taoyuan 325, Taiwan.
Division of Behavioral Neurology, Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.
Diagnostics (Basel). 2024 Feb 7;14(4):365. doi: 10.3390/diagnostics14040365.
Alzheimer's disease (AD) and vascular dementia (VaD) are the two most common forms of dementia. However, their neuropsychological and pathological features often overlap, making it difficult to distinguish between AD and VaD. In addition to clinical consultation and laboratory examinations, clinical dementia diagnosis in Taiwan will also include Tc-99m-ECD SPECT imaging examination. Through machine learning and deep learning technology, we explored the feasibility of using the above clinical practice data to distinguish AD and VaD. We used the physiological data (33 features) and Tc-99m-ECD SPECT images of 112 AD patients and 85 VaD patients in the Taiwanese Nuclear Medicine Brain Image Database to train the classification model. The results, after filtering by the number of SVM RFE 5-fold features, show that the average accuracy of physiological data in distinguishing AD/VaD is 81.22% and the AUC is 0.836; the average accuracy of training images using the Inception V3 model is 85% and the AUC is 0.95. Finally, Grad-CAM heatmap was used to visualize the areas of concern of the model and compared with the SPM analysis method to further understand the differences. This research method can quickly use machine learning and deep learning models to automatically extract image features based on a small amount of general clinical data to objectively distinguish AD and VaD.
阿尔茨海默病(AD)和血管性痴呆(VaD)是两种最常见的痴呆形式。然而,它们的神经心理学和病理学特征常常重叠,使得难以区分AD和VaD。除了临床会诊和实验室检查外,台湾的临床痴呆诊断还将包括Tc-99m-ECD单光子发射计算机断层显像(SPECT)成像检查。通过机器学习和深度学习技术,我们探索了利用上述临床实践数据区分AD和VaD的可行性。我们使用台湾核医学脑图像数据库中112例AD患者和85例VaD患者的生理数据(33个特征)和Tc-99m-ECD SPECT图像来训练分类模型。经支持向量机递归特征消除(SVM RFE)5折特征数量筛选后的结果显示,生理数据区分AD/VaD的平均准确率为81.22%,曲线下面积(AUC)为0.836;使用Inception V3模型训练图像的平均准确率为85%,AUC为0.95。最后,使用梯度加权类激活映射(Grad-CAM)热图来可视化模型的关注区域,并与统计参数映射(SPM)分析方法进行比较,以进一步了解差异。这种研究方法可以基于少量常规临床数据,快速利用机器学习和深度学习模型自动提取图像特征,从而客观地区分AD和VaD。