Hassan Salma, Akaila Dawlat, Arjemandi Maryam, Papineni Vijay, Yaqub Mohammad
Mohamed bin Zayed University of Artificial Intelligence, Abu Dhabi, United Arab Emirates.
Sheikh Shakhbout Medical City, Abu Dhabi, United Arab Emirates.
Sci Rep. 2025 May 6;15(1):15835. doi: 10.1038/s41598-025-97674-0.
In the complex realm of cognitive disorders, Alzheimer's disease (AD) and vascular dementia (VaD) are the two most prevalent dementia types, presenting entangled symptoms yet requiring distinct treatment approaches. The crux of effective treatment in slowing neurodegeneration lies in early, accurate diagnosis, as this significantly assists doctors in determining the appropriate course of action. However, current diagnostic practices often delay VaD diagnosis, impeding timely intervention and adversely affecting patient prognosis. This paper presents an innovative multi-omics approach to accurately differentiate AD from VaD, achieving a diagnostic accuracy of 89.25%. The proposed method segments the longitudinal MRI scans and extracts advanced radiomics features. Subsequently, it synergistically integrates the radiomics features with an ensemble of clinical, cognitive, and genetic data to provide state-of-the-art diagnostic accuracy, setting a new benchmark in classification accuracy on a large public dataset. The paper's primary contribution is proposing a comprehensive methodology utilizing multi-omics data to provide a nuanced understanding of dementia subtypes. Additionally, the paper introduces an interpretable model to enhance clinical decision-making coupled with a novel model architecture for evaluating treatment efficacy. These advancements lay the groundwork for future work not only aimed at improving differential diagnosis but also mitigating and preventing the progression of dementia.
在认知障碍的复杂领域中,阿尔茨海默病(AD)和血管性痴呆(VaD)是两种最常见的痴呆类型,它们症状相互交织,但需要不同的治疗方法。有效治疗以减缓神经退行性变的关键在于早期、准确的诊断,因为这能极大地帮助医生确定合适的治疗方案。然而,目前的诊断方法常常会延迟VaD的诊断,阻碍及时干预,并对患者的预后产生不利影响。本文提出了一种创新的多组学方法,以准确区分AD和VaD,诊断准确率达到89.25%。所提出的方法对纵向MRI扫描进行分割,并提取高级放射组学特征。随后,它将放射组学特征与临床、认知和基因数据的集合进行协同整合,以提供最先进的诊断准确率,在一个大型公共数据集上的分类准确率方面树立了新的标杆。本文的主要贡献在于提出了一种利用多组学数据的综合方法,以对痴呆亚型有更细致入微的理解。此外,本文还引入了一个可解释的模型来加强临床决策,并引入了一种用于评估治疗效果的新型模型架构。这些进展不仅为未来旨在改善鉴别诊断,还为减轻和预防痴呆进展的工作奠定了基础。